
The power factor of wattless current is
A. Infinity
B. 1
C. Zero
D. $\dfrac{1}{2}$
Answer
584.1k+ views
- Hint: First we have to know what is the power factor. Then to learn what is wattless current. Then, we can find the power factor for the wattless current. We should already have some idea of the phase difference of voltage and current.
Formula used: $P_{avg}=V_{rms}.I_{rms}. \cos\phi$
Complete step-by-step solution -
We are going to see what is wattless current and what is the power factor. For this, let's take any ac circuit. Let’s take its source voltage to be $V=V_0.\sin\omega t$ . Here, $\omega$ is the angular frequency of the ac source. And also assume that the current in the circuit is given by $I=I_0.\sin(\omega t+\phi)$
$\phi$ is the phase difference between voltage and current.
The power dissipation,
$\begin{align}
& P=VI={{V}_{0}}.{{I}_{0}}.\sin \omega t.\sin (\omega t+\phi ) \\
& P=\dfrac{1}{2}{{V}_{0}}.{{I}_{0}}(\cos \phi -\cos (2\omega t+\phi )) \\
\end{align}$
Now, taking time average over a complete cycle, we know that the second cosine function will lead to zero. So, average power is given by,
\[\begin{align}
& {{P}_{avg}}=\dfrac{1}{2}{{V}_{0}}.{{I}_{0}}.\cos \phi \\
& {{P}_{avg}}=\dfrac{{{V}_{0}}}{\sqrt{2}}.\dfrac{{{I}_{0}}}{\sqrt{2}}\cos \phi \\
& {{P}_{avg}}={{V}_{rms}}.{{I}_{rms}}.\cos \phi \\
\end{align}\]
In case of purely inductive circuits, current lags behind voltage by $\dfrac{\phi}{2}$ . Hence, $\phi=-\dfrac{\phi}{2}$. So, average power ${{P}_{avg}}={{V}_{rms}}>{{I}_{rms}}.\cos (-\dfrac{\phi }{2})=0\text{ watt}$
Similarly, for purely capacitive circuit or capacitive inductive circuit, $P_{avg}=0$ watt.
The currents in these circuits are called wattless current. Since average power is zero and watt is the unit of measuring power.
Power factor is $\cos\phi$. For, wattless current, its value is $\cos\dfrac{\phi}{2}=0$.
So, option C is the correct answer.
Additional information:
In the case of LCR circuits, the value of $\phi$ depends on values of R, C, L and $\omega$. Power factor can have a value ranging from 0 to 1. In case of resonance, $\phi=0$. It makes the power factor equal to one. Hence, maximum power is obtained.
Note: Remember this few thing:
1. Power factor can never have a value greater than one, also it can’t be negative.
2. Know that, $\cos(-\phi)=\cos\phi$
3. If there’s no resistance in a circuit, its current is called wattless. But in practical, all circuits have resistance and wattless current is not possible.
Formula used: $P_{avg}=V_{rms}.I_{rms}. \cos\phi$
Complete step-by-step solution -
We are going to see what is wattless current and what is the power factor. For this, let's take any ac circuit. Let’s take its source voltage to be $V=V_0.\sin\omega t$ . Here, $\omega$ is the angular frequency of the ac source. And also assume that the current in the circuit is given by $I=I_0.\sin(\omega t+\phi)$
$\phi$ is the phase difference between voltage and current.
The power dissipation,
$\begin{align}
& P=VI={{V}_{0}}.{{I}_{0}}.\sin \omega t.\sin (\omega t+\phi ) \\
& P=\dfrac{1}{2}{{V}_{0}}.{{I}_{0}}(\cos \phi -\cos (2\omega t+\phi )) \\
\end{align}$
Now, taking time average over a complete cycle, we know that the second cosine function will lead to zero. So, average power is given by,
\[\begin{align}
& {{P}_{avg}}=\dfrac{1}{2}{{V}_{0}}.{{I}_{0}}.\cos \phi \\
& {{P}_{avg}}=\dfrac{{{V}_{0}}}{\sqrt{2}}.\dfrac{{{I}_{0}}}{\sqrt{2}}\cos \phi \\
& {{P}_{avg}}={{V}_{rms}}.{{I}_{rms}}.\cos \phi \\
\end{align}\]
In case of purely inductive circuits, current lags behind voltage by $\dfrac{\phi}{2}$ . Hence, $\phi=-\dfrac{\phi}{2}$. So, average power ${{P}_{avg}}={{V}_{rms}}>{{I}_{rms}}.\cos (-\dfrac{\phi }{2})=0\text{ watt}$
Similarly, for purely capacitive circuit or capacitive inductive circuit, $P_{avg}=0$ watt.
The currents in these circuits are called wattless current. Since average power is zero and watt is the unit of measuring power.
Power factor is $\cos\phi$. For, wattless current, its value is $\cos\dfrac{\phi}{2}=0$.
So, option C is the correct answer.
Additional information:
In the case of LCR circuits, the value of $\phi$ depends on values of R, C, L and $\omega$. Power factor can have a value ranging from 0 to 1. In case of resonance, $\phi=0$. It makes the power factor equal to one. Hence, maximum power is obtained.
Note: Remember this few thing:
1. Power factor can never have a value greater than one, also it can’t be negative.
2. Know that, $\cos(-\phi)=\cos\phi$
3. If there’s no resistance in a circuit, its current is called wattless. But in practical, all circuits have resistance and wattless current is not possible.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

