
The potential (in volts) of a charge distribution is given by
\[V\left( z \right){\text{ }} = {\text{ }}30{\text{ }} - {\text{ }}5{z^2}for{\text{ }}\left| z \right| \leqslant 1m\]
\[V\left( z \right){\text{ }} = {\text{ }}35{\text{ }} - {\text{ }}10z{\text{ }}for{\text{ }}\left| z \right| \geqslant 1m\]
\[V\left( z \right){\text{ }}does{\text{ }}not{\text{ }}depends{\text{ }}on{\text{ }}x{\text{ }}and{\text{ }}y.\]
If the potential is generated by a constant charge per unit volume \[{r_0}(in{\text{ }}units{\text{ }}of{e_0})\]which is
spread over a certain region, then choose the correct statement:
A. \[{r_0} = {\text{ }}20{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0\] elsewhere.
B. \[.{r_0} = 40{e_0}\] in the entire region.
C. \[{r_0} = {\text{ }}10{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0\] elsewhere.
D. \[{r_0} = 20{e_0}\] in the entire region.
Answer
571.5k+ views
Hint:
1. Here before solving this problem we need to know about Gauss’ law and also Poisson’s equation.
2. If V is the electrical potential generated by a static charge distribution of charge density ρ then according to Poisson’s equation
$^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}}$
3. Every electrical potential follows Poisson’s equation.
Complete step by step solution :
For \[\left| z \right| \leqslant 1m\],
\[V\left( z \right) = {\text{ }}30{\text{ }} - {\text{ }}5{z^2}\left( {given} \right).\]
Now, Putting This expression of V(z) in Poisson’s equation we get,
\[
^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}} \\
\Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{{\partial ^2}(30 - 5{z^2})}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{\partial ( - 10z)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow - 10 = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \rho = 10{\varepsilon _0} \\
\]
As V is independent of x and y, so the \[{1^{st}}\]two terms of \[{\nabla ^2}V\] vanishes.
So for \[\left| z \right| \leqslant 1m\] region the charge density is$10{\varepsilon _0}$
Now, For \[\left| z \right| \geqslant 1m,{\text{ }}V\left( z \right) = {\text{ }}35 - 10z{\text{ }}\left( {given} \right).\]
Putting This expression of \[V\left( z \right)\]in Poisson’s equation we get,
$
\\
\Rightarrow \dfrac{{{\partial ^2}(35 - 10z)}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{\partial ( - 10)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow 0 = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \rho = 0 \\
$
So for \[\left| z \right| \geqslant 1m\] region the charge density is zero.
Therefore the final answer is \[{r_0} = {\text{ }}10{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0\] elsewhere.
Hence the correct answer is (C).
Note:
1. In this type of problem we have to use proper expression of gradient operator based on the potential \[\left( {in{\text{ }}which{\text{ }}coordinate{\text{ }}system{\text{ }}it{\text{ }}is{\text{ }}given} \right)\]because for cartesian coordinate system the expression of \[{\nabla ^2}V\] is given in solution but for cylindrical and spherical polar Coordinate system the expression of \[{\nabla ^2}V\] is different.
2. Extra care should be given while doing the partial derivative.
1. Here before solving this problem we need to know about Gauss’ law and also Poisson’s equation.
2. If V is the electrical potential generated by a static charge distribution of charge density ρ then according to Poisson’s equation
$^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}}$
3. Every electrical potential follows Poisson’s equation.
Complete step by step solution :
For \[\left| z \right| \leqslant 1m\],
\[V\left( z \right) = {\text{ }}30{\text{ }} - {\text{ }}5{z^2}\left( {given} \right).\]
Now, Putting This expression of V(z) in Poisson’s equation we get,
\[
^{{\nabla ^2}V = - \dfrac{\rho }{{{\varepsilon _0}}}} \\
\Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {y^2}}} + \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{{\partial ^2}V}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{{\partial ^2}(30 - 5{z^2})}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{\partial ( - 10z)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow - 10 = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \rho = 10{\varepsilon _0} \\
\]
As V is independent of x and y, so the \[{1^{st}}\]two terms of \[{\nabla ^2}V\] vanishes.
So for \[\left| z \right| \leqslant 1m\] region the charge density is$10{\varepsilon _0}$
Now, For \[\left| z \right| \geqslant 1m,{\text{ }}V\left( z \right) = {\text{ }}35 - 10z{\text{ }}\left( {given} \right).\]
Putting This expression of \[V\left( z \right)\]in Poisson’s equation we get,
$
\\
\Rightarrow \dfrac{{{\partial ^2}(35 - 10z)}}{{\partial {z^2}}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \dfrac{{\partial ( - 10)}}{{\partial z}} = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow 0 = - \dfrac{\rho }{{{\varepsilon _0}}} \\
\Rightarrow \rho = 0 \\
$
So for \[\left| z \right| \geqslant 1m\] region the charge density is zero.
Therefore the final answer is \[{r_0} = {\text{ }}10{e_0}for{\text{ }}\left| z \right| \leqslant 1m{\text{ }} and {r_0} = 0\] elsewhere.
Hence the correct answer is (C).
Note:
1. In this type of problem we have to use proper expression of gradient operator based on the potential \[\left( {in{\text{ }}which{\text{ }}coordinate{\text{ }}system{\text{ }}it{\text{ }}is{\text{ }}given} \right)\]because for cartesian coordinate system the expression of \[{\nabla ^2}V\] is given in solution but for cylindrical and spherical polar Coordinate system the expression of \[{\nabla ^2}V\] is different.
2. Extra care should be given while doing the partial derivative.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

