The potential energy of a particle along x-axis varies as, \[U = - 20 + {\left( {x - 2} \right)^2}\] where \[U\] is in joule and \[x\] in meter. State the type of equilibrium and \[x = 2m\].
Answer
278.7k+ views
Hint: In order to solve this question, we are first going to find the equilibrium position by differentiating the potential energy with respect to the position, then equating it to zero, we get the position equal to\[x = 2m\]. To find the type of equilibrium, we will double differentiate\[U\]and equate to zero.
Formula used:
For the particle to be in equilibrium,
\[\dfrac{{dU}}{{dx}} = 0\]
And for stable equilibrium of the particle,
\[\dfrac{{{d^2}U}}{{d{x^2}}} > 0\]
Where, \[U\] is the potential and\[x\]is the position.
Complete answer:
It is given in the question that the potential energy of a particle along x-axis varies as,
\[U = - 20 + {\left( {x - 2} \right)^2}\]
Now simplifying this equation further, we get
$ U = {x^2} + 4 - 4x - 20 \\
\Rightarrow U = {x^2} - 4x - 16 \\ $
To find the equilibrium position, we need to differentiate the potential energy with respect to the position, i.e.\[x\]
\[\dfrac{{dU}}{{dx}} = 2x - 4\]
Putting this differentiation equal to zero, we get
$ \dfrac{{dU}}{{dx}} = 2x - 4 = 0 \\
\Rightarrow 2x = 4 \\
\Rightarrow x = 2 \\
$
To find the type of the equilibrium, we again differentiate the first order differential with respect to position, i.e. \[x\]
\[\dfrac{{{d^2}U}}{{d{x^2}}} = 2\]
Here, we can see that
As \[2 > 0\]
Hence, we can deduce that
\[\dfrac{{{d^2}U}}{{d{x^2}}} > 0\]
Which shows that at \[x = 2m\], the particle is in stable equilibrium.
The value of the minimum potential energy at the position \[x = 2m\] is
\[U = - 20\]
Note: It is important to note that the less the potential energy of the particle more is the stable equilibrium, the minimum potential energy position is the equilibrium position and for it to be the stable equilibrium, the double differential of the potential energy has to be greater than zero.
Formula used:
For the particle to be in equilibrium,
\[\dfrac{{dU}}{{dx}} = 0\]
And for stable equilibrium of the particle,
\[\dfrac{{{d^2}U}}{{d{x^2}}} > 0\]
Where, \[U\] is the potential and\[x\]is the position.
Complete answer:
It is given in the question that the potential energy of a particle along x-axis varies as,
\[U = - 20 + {\left( {x - 2} \right)^2}\]
Now simplifying this equation further, we get
$ U = {x^2} + 4 - 4x - 20 \\
\Rightarrow U = {x^2} - 4x - 16 \\ $
To find the equilibrium position, we need to differentiate the potential energy with respect to the position, i.e.\[x\]
\[\dfrac{{dU}}{{dx}} = 2x - 4\]
Putting this differentiation equal to zero, we get
$ \dfrac{{dU}}{{dx}} = 2x - 4 = 0 \\
\Rightarrow 2x = 4 \\
\Rightarrow x = 2 \\
$
To find the type of the equilibrium, we again differentiate the first order differential with respect to position, i.e. \[x\]
\[\dfrac{{{d^2}U}}{{d{x^2}}} = 2\]
Here, we can see that
As \[2 > 0\]
Hence, we can deduce that
\[\dfrac{{{d^2}U}}{{d{x^2}}} > 0\]
Which shows that at \[x = 2m\], the particle is in stable equilibrium.
The value of the minimum potential energy at the position \[x = 2m\] is
\[U = - 20\]
Note: It is important to note that the less the potential energy of the particle more is the stable equilibrium, the minimum potential energy position is the equilibrium position and for it to be the stable equilibrium, the double differential of the potential energy has to be greater than zero.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
