
The points with position vectors\[20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \] are collinear. The value of p is:
Answer
585.6k+ views
Hint: If we have two vectors A and B then \[\overrightarrow {AB} \] is given as \[\overrightarrow B - \overrightarrow A \]. Two vectors A and B to be collinear, angle between the vector A and B made by the given position vectors should be 0 or 180 degree.
Complete step-by-step answer:
Suppose position vector\[\overrightarrow A = 20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[\overrightarrow B = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[\overrightarrow C = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \].
Now, \[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \]
\[
= 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - (20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ) \\
= - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge \\
\]
Similarly, \[\overrightarrow { = BC} = \overrightarrow C - \overrightarrow B \]
\[
= 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge - (5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge ) \\
= 5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge \\
\]
As we know they are collinear, the angle between the vector AB and BC must be 0 or 180 degree.
\[
\Rightarrow \overrightarrow {AB} \times \overrightarrow {BC} = 0 \\
\Rightarrow \left( { - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge } \right) \times \left( {5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge } \right) = 0 \\
\Rightarrow 0\mathop i\limits^ \wedge + ( - 15)( - 12) + (1 + p)(5) + 0\mathop j\limits^ \wedge = 0 \\
\Rightarrow 180 + 5 + 5p = 0 \\
\Rightarrow 5p = - 185 \\
\Rightarrow p = - 37 \\
\]
Required value of p is -37.
Note: Collinear points are the points that lie on a single line and therefore the angle between them will either be 0 or 180 degree. So, if two vectors \[\overrightarrow A \] and \[\overrightarrow B \]are collinear then we can write it as \[\overrightarrow A = n\overrightarrow B \].
Complete step-by-step answer:
Suppose position vector\[\overrightarrow A = 20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge \],\[\overrightarrow B = 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge \] and \[\overrightarrow C = 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge \].
Now, \[\overrightarrow {AB} = \overrightarrow B - \overrightarrow A \]
\[
= 5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - (20\mathop i\limits^ \wedge + p\mathop j\limits^ \wedge ) \\
= - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge \\
\]
Similarly, \[\overrightarrow { = BC} = \overrightarrow C - \overrightarrow B \]
\[
= 10\mathop i\limits^ \wedge - 13\mathop j\limits^ \wedge - (5\mathop i\limits^ \wedge - \mathop j\limits^ \wedge ) \\
= 5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge \\
\]
As we know they are collinear, the angle between the vector AB and BC must be 0 or 180 degree.
\[
\Rightarrow \overrightarrow {AB} \times \overrightarrow {BC} = 0 \\
\Rightarrow \left( { - 15\mathop i\limits^ \wedge - (1 + p)\mathop j\limits^ \wedge } \right) \times \left( {5\mathop i\limits^ \wedge - 12\mathop j\limits^ \wedge } \right) = 0 \\
\Rightarrow 0\mathop i\limits^ \wedge + ( - 15)( - 12) + (1 + p)(5) + 0\mathop j\limits^ \wedge = 0 \\
\Rightarrow 180 + 5 + 5p = 0 \\
\Rightarrow 5p = - 185 \\
\Rightarrow p = - 37 \\
\]
Required value of p is -37.
Note: Collinear points are the points that lie on a single line and therefore the angle between them will either be 0 or 180 degree. So, if two vectors \[\overrightarrow A \] and \[\overrightarrow B \]are collinear then we can write it as \[\overrightarrow A = n\overrightarrow B \].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

