
The points of $z$ satisfying $\arg \left( {\dfrac{{z - 1}}{{z + 1}}} \right) = \dfrac{\pi }{4}$ lies on
(a) an arc of a circle
(b) a parabola
(c) an ellipse
(d) a straight line
Answer
578.1k+ views
Hint: We will first let the complex number $z$ be $x + iy$ and then substitute it in the given expression. We will find the argument and therefore, we need the real and complex part of the complex number. Thus, rationalise the expression and apply the formula of the argument of complex numbers and form the equation.
Complete step-by-step answer:
We are given that $\arg \left( {\dfrac{{z - 1}}{{z + 1}}} \right) = \dfrac{\pi }{4}$, where $z$ is a complex number.
Let $z = x + iy$
Then, on substituting the value in the given equation, we will get,
$
\arg \left( {\dfrac{{x + iy - 1}}{{x + iy + 1}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{x - 1 + iy}}{{x + 1 + iy}}} \right) = \dfrac{\pi }{4} \\
$
We will now rationalise the expression by multiplying and dividing the number by the conjugate of the denominator.
$
\arg \left( {\left( {\dfrac{{x - 1 + iy}}{{x + 1 + iy}}} \right)\left( {\dfrac{{x + 1 - iy}}{{x + 1 - iy}}} \right)} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{{x^2} + x - ixy - x - 1 + iy + ixy + iy + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{{x^2} - 1 + {y^2} + i2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4} \\
$
Which can also be written as \[\arg \left( {\dfrac{{{x^2} - 1 + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}} + i\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4}\]
Also, we know that if the complex number is of the form $a + ib$, then argument of the complex number is given by ${\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)$
Therefore, from the above equation, we have,
$
{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}}}{{\dfrac{{{x^2} - 1 + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \dfrac{{2y}}{{{x^2} - 1 + {y^2}}} = \tan \dfrac{\pi }{4} \\
\Rightarrow \dfrac{{2y}}{{{x^2} - 1 + {y^2}}} = 1 \\
$
On cross-multiplying, we will have,
$
2y = {x^2} - 1 + {y^2} \\
\Rightarrow {x^2} - 1 + {y^2} - 2y = 0 \\
$
The above equation represents an equation of a circle.
Therefore, the points of $z$ satisfying the condition $\arg \left( {\dfrac{{z - 1}}{{z + 1}}} \right) = \dfrac{\pi }{4}$ lies on the arc of a circle.
Hence, option (a) is correct.
Note: The argument of the complex number is the angle formed by the complex number with the real axis or $x$ axis . It is measured in radians. Also, the modulus of the complex number gives the magnitude of the complex number.
Complete step-by-step answer:
We are given that $\arg \left( {\dfrac{{z - 1}}{{z + 1}}} \right) = \dfrac{\pi }{4}$, where $z$ is a complex number.
Let $z = x + iy$
Then, on substituting the value in the given equation, we will get,
$
\arg \left( {\dfrac{{x + iy - 1}}{{x + iy + 1}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{x - 1 + iy}}{{x + 1 + iy}}} \right) = \dfrac{\pi }{4} \\
$
We will now rationalise the expression by multiplying and dividing the number by the conjugate of the denominator.
$
\arg \left( {\left( {\dfrac{{x - 1 + iy}}{{x + 1 + iy}}} \right)\left( {\dfrac{{x + 1 - iy}}{{x + 1 - iy}}} \right)} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{{x^2} + x - ixy - x - 1 + iy + ixy + iy + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \arg \left( {\dfrac{{{x^2} - 1 + {y^2} + i2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4} \\
$
Which can also be written as \[\arg \left( {\dfrac{{{x^2} - 1 + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}} + i\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}} \right) = \dfrac{\pi }{4}\]
Also, we know that if the complex number is of the form $a + ib$, then argument of the complex number is given by ${\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)$
Therefore, from the above equation, we have,
$
{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}}}{{\dfrac{{{x^2} - 1 + {y^2}}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}}}} \right) = \dfrac{\pi }{4} \\
\Rightarrow \dfrac{{2y}}{{{x^2} - 1 + {y^2}}} = \tan \dfrac{\pi }{4} \\
\Rightarrow \dfrac{{2y}}{{{x^2} - 1 + {y^2}}} = 1 \\
$
On cross-multiplying, we will have,
$
2y = {x^2} - 1 + {y^2} \\
\Rightarrow {x^2} - 1 + {y^2} - 2y = 0 \\
$
The above equation represents an equation of a circle.
Therefore, the points of $z$ satisfying the condition $\arg \left( {\dfrac{{z - 1}}{{z + 1}}} \right) = \dfrac{\pi }{4}$ lies on the arc of a circle.
Hence, option (a) is correct.
Note: The argument of the complex number is the angle formed by the complex number with the real axis or $x$ axis . It is measured in radians. Also, the modulus of the complex number gives the magnitude of the complex number.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

