
The points \[A\left( -1,3,0 \right)\], \[B\left( 2,2,1 \right)\]and \[C\left( 1,1,3 \right)\] determine a plane. The distance of the plane \[ABC\] from the point \[D\left( 5,7,8 \right)\] is:
(a) \[\sqrt{66}\]
(b) \[\sqrt{71}\]
(c) \[\sqrt{73}\]
(d) \[\sqrt{76}\]
Answer
513.9k+ views
Hint: We will first use the formula $\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0$ to find the equation of the plane $ABC $ passing through these points A, B, and C since we know from the question that the points A, B, and C determine a plane. Then we will find the distance of the point $D$ from this plane $ABC$.
Complete step-by-step solution:
We know that the equation of plane passing through any three points \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given by
$\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0$
Here, from the question, we get
\[\begin{align}
& {{x}_{1}}=-1,{{x}_{2}}=2,{{x}_{3}}=1, \\
& {{y}_{1}}=3,{{y}_{2}}=2,{{y}_{3}}=1, \\
& {{z}_{1}}=0,{{z}_{2}}=1,{{z}_{3}}=3 \\
\end{align}\]
Then the equation of plane $ABC$ passing through points A, B, and C is given by:
\[\left| \begin{matrix}
x-\left( -1 \right) & y-3 & z-0 \\
2-\left( -1 \right) & 2-3 & 1-0 \\
1-\left( -1 \right) & 1-3 & 3-0 \\
\end{matrix} \right|=0\]
Solving it further, we get
\[\begin{align}
& \Rightarrow \left| \begin{matrix}
x+1 & y-3 & z-0 \\
2+1 & 2-3 & 1-0 \\
1+1 & 1-3 & 3-0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
x+1 & y-3 & z \\
3 & -1 & 1 \\
2 & -2 & 3 \\
\end{matrix} \right|=0 \\
\end{align}\]
Expanding along the first row and solving further, we get
\[\begin{align}
& \Rightarrow \left( x+1 \right)\left\{ \left( -1 \right)\cdot 3-1\cdot \left( -2 \right) \right\}-\left( y-3 \right)\left\{ 3\cdot 3-2\cdot 1 \right\}+z\left\{ 3\cdot \left( -2 \right)-2\left( -1 \right) \right\}=0 \\
& \Rightarrow \left( x+1 \right)\left( -3+2 \right)-\left( y-3 \right)\left( 7 \right)+z\left( -6+2 \right)=0 \\
& \Rightarrow -\left( x+1 \right)-7\left( y-3 \right)-4z=0 \\
& \Rightarrow -x-1-7y+21-4z=0 \\
& \Rightarrow -x-7y-4z+20=0 \\
& \Rightarrow x+7y+4z-20=0 \\
\end{align}\]
We know that the distance of a point $\left( {{x}_{4}},{{y}_{4}},{{z}_{4}} \right)$ from a plane $ax+by+cz+d=0$ is given by
$T=\left| \dfrac{a{{x}_{4}}+b{{y}_{4}}+c{{z}_{4}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|$
Then the distance of the point D from the plane ABC is given by
$\begin{align}
& T=\left| \dfrac{5\cdot 1+7\cdot 7+8\cdot 4-20}{\sqrt{{{1}^{2}}+{{7}^{2}}+{{4}^{2}}}} \right|\\
& =\left| \dfrac{5+49+32-20}{\sqrt{1+49+16}} \right| \\
& =\left| \dfrac{66}{\sqrt{66}} \right| \\
& =\sqrt{66}
\end{align}$
Hence, the correct option is (a).
Note: We should always be careful with the plus (+) and minus (-) sign while writing the formulas and calculating, because a single error can lead to change in the answer drastically. Also, practice by solving a few similar types of questions so that there is less confusion regarding the positions of $x,y,z,{{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}},{{y}_{1}},{{y}_{2}},{{y}_{3}},{{y}_{4}},{{z}_{1}},{{z}_{2}},{{z}_{3}},{{z}_{4}}$ in the above used formulas.
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0$ to find the equation of the plane $ABC $ passing through these points A, B, and C since we know from the question that the points A, B, and C determine a plane. Then we will find the distance of the point $D$ from this plane $ABC$.
Complete step-by-step solution:
We know that the equation of plane passing through any three points \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given by
$\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0$
Here, from the question, we get
\[\begin{align}
& {{x}_{1}}=-1,{{x}_{2}}=2,{{x}_{3}}=1, \\
& {{y}_{1}}=3,{{y}_{2}}=2,{{y}_{3}}=1, \\
& {{z}_{1}}=0,{{z}_{2}}=1,{{z}_{3}}=3 \\
\end{align}\]
Then the equation of plane $ABC$ passing through points A, B, and C is given by:
\[\left| \begin{matrix}
x-\left( -1 \right) & y-3 & z-0 \\
2-\left( -1 \right) & 2-3 & 1-0 \\
1-\left( -1 \right) & 1-3 & 3-0 \\
\end{matrix} \right|=0\]
Solving it further, we get
\[\begin{align}
& \Rightarrow \left| \begin{matrix}
x+1 & y-3 & z-0 \\
2+1 & 2-3 & 1-0 \\
1+1 & 1-3 & 3-0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
x+1 & y-3 & z \\
3 & -1 & 1 \\
2 & -2 & 3 \\
\end{matrix} \right|=0 \\
\end{align}\]
Expanding along the first row and solving further, we get
\[\begin{align}
& \Rightarrow \left( x+1 \right)\left\{ \left( -1 \right)\cdot 3-1\cdot \left( -2 \right) \right\}-\left( y-3 \right)\left\{ 3\cdot 3-2\cdot 1 \right\}+z\left\{ 3\cdot \left( -2 \right)-2\left( -1 \right) \right\}=0 \\
& \Rightarrow \left( x+1 \right)\left( -3+2 \right)-\left( y-3 \right)\left( 7 \right)+z\left( -6+2 \right)=0 \\
& \Rightarrow -\left( x+1 \right)-7\left( y-3 \right)-4z=0 \\
& \Rightarrow -x-1-7y+21-4z=0 \\
& \Rightarrow -x-7y-4z+20=0 \\
& \Rightarrow x+7y+4z-20=0 \\
\end{align}\]
We know that the distance of a point $\left( {{x}_{4}},{{y}_{4}},{{z}_{4}} \right)$ from a plane $ax+by+cz+d=0$ is given by
$T=\left| \dfrac{a{{x}_{4}}+b{{y}_{4}}+c{{z}_{4}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|$
Then the distance of the point D from the plane ABC is given by
$\begin{align}
& T=\left| \dfrac{5\cdot 1+7\cdot 7+8\cdot 4-20}{\sqrt{{{1}^{2}}+{{7}^{2}}+{{4}^{2}}}} \right|\\
& =\left| \dfrac{5+49+32-20}{\sqrt{1+49+16}} \right| \\
& =\left| \dfrac{66}{\sqrt{66}} \right| \\
& =\sqrt{66}
\end{align}$
Hence, the correct option is (a).
Note: We should always be careful with the plus (+) and minus (-) sign while writing the formulas and calculating, because a single error can lead to change in the answer drastically. Also, practice by solving a few similar types of questions so that there is less confusion regarding the positions of $x,y,z,{{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}},{{y}_{1}},{{y}_{2}},{{y}_{3}},{{y}_{4}},{{z}_{1}},{{z}_{2}},{{z}_{3}},{{z}_{4}}$ in the above used formulas.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
