The point A divides the join of $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio .What is the value of for which the area of the $ \Delta ABC $ where $ B(1,5) $ , $ C\left( {7, - 2} \right) $ is 2 square units.?
A. $ 7,\dfrac{{31}}{9} $
B. $ - 7,\dfrac{{31}}{9} $
C. $ 7, - \dfrac{{31}}{9} $
D. $ - 7, - \dfrac{{31}}{9} $
Answer
Verified
468k+ views
Hint: The coordinates of point is to be calculated using the section formula. The coordinates of point which divides the join of two points internally in the ratio $ m:n $ , $ D\left( {{x_1},{y_1}} \right) $ and $ E\left( {{x_2},{y_2}} \right) $ is $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ . Then calculate the area of the triangle using the coordinates of the points A,B and C.
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE