Answer
Verified
429.9k+ views
Hint: The coordinates of point is to be calculated using the section formula. The coordinates of point which divides the join of two points internally in the ratio $ m:n $ , $ D\left( {{x_1},{y_1}} \right) $ and $ E\left( {{x_2},{y_2}} \right) $ is $ \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $ . Then calculate the area of the triangle using the coordinates of the points A,B and C.
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Complete step-by-step answer:
Given information
Point A divides the join of points $ P\left( { - 5,1} \right) $ and $ Q\left( {3,5} \right) $ in the ratio of $ k:1 $ .
Let the coordinates of point be $ A\left( {x,y} \right) $ which divides the join of two points internally in the ratio is given by,
$ \Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Here $ m = k $ , $ n = 1 $ , $ {x_1} = - 5 $ , $ {y_1} = 1 $ , $ {x_2} = 3 $ , and $ {y_2} = 5 $ . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
$
x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\
x = \dfrac{{3k - 5}}{{k + 1}} \\
$
The x-coordinate of point B is given by,
$
y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\
y = \dfrac{{5k + 1}}{{k + 1}} \\
$
The coordinates of point is $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ .
The area of the triangle whose coordinates is $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is given by,
$ \Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right) $
The coordinates of the vertices of the triangle are $ A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) $ , $ B(1,5) $ , and $ C\left( {7, - 2} \right) $ .Substitute the value A,B and C in equation (1), we get
\[\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)\]
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.
\[
\Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\
2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\
\Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\
\]
Equation (3) can have 2 values of k
When modulus opens with a positive sign
$ \Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 10k = 70 \\
\Rightarrow k = 7 \\
$
When modulus opens with a negative sign
$ \Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}} $
$
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 18k = 62 \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, the two values of k are $ k = 7,\dfrac{{31}}{9} $
So, the correct answer is “Option A”.
Note: The important steps and formulae in the question are,
The use of section formula, when point $ A\left( {x,y} \right) $ divides the join of $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ in the ratio of $ m:n $ internally,
$ \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) $
Also when it divides externally it is given by
$ \left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right) $
The area of the triangle whose coordinates are $ \left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) $ and $ \left( {{x_3},{y_3}} \right) $ is,
$ {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| $
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell