
The phase difference between current and voltage in an AC circuit is $\dfrac{\pi }{4}$ radian. If the frequency of AC is 50Hz, then the phase difference is equivalent to the time difference of
A. 0.75s
B. 10.5s
C. 2.5ms
D. 0.25ms
Answer
610.8k+ views
Hint – In order to solve this problem we need to find the time period of one revolution and then find the time period of $\dfrac{\pi }{4}$ revolution. Doing this will solve your problem.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

