Answer
Verified
464.4k+ views
Hint: pH of a solution is the negative log of the concentration of hydrogen ions present in the solution. To find the acidity of a basic buffer, we have to find the pOH of the buffer and then put it in the equation: pH + pOH=14 to get the correct solution.
Complete answer:
Generally, we define buffer solution as a solution which is resistant to change in pH upon addition of a small amount of base or acid. Buffer solution usually consists of a weak acid and salt of its conjugate base or of a weak base and a salt of its conjugate acid.
Here, we have$N{{H}_{4}}OH+N{{H}_{4}}Cl$ which is a basic buffer as $N{{H}_{4}}OH$ is a weak base and $N{{H}_{4}}Cl$ is a salt of its conjugate acid which is $N{{H}_{4}}^{+}$.
The pH of a buffer solution is calculated by the Henderson-Hasselbalch equation. We can derive this equation as follows.
The weak base will dissociate as-
$N{{H}_{4}}OH\rightleftharpoons N{{H}_{4}}^{+}+O{{H}^{-}}$
Therefore, we can write the base dissociation constant${{K}_{b}}$as-
${{K}_{b}}=\dfrac{\left[ N{{H}_{4}}^{+} \right]\left[ O{{H}^{-}} \right]}{\left[ N{{H}_{4}}OH \right]}$, which is the product of concentration of the dissociated ions divided by the concentration of the base.
From the above equation, we can write that$\left[ O{{H}^{-}} \right]=\dfrac{{{K}_{b}}\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]}$
Taking negative log on both sides, we will get
$-\log \left[ O{{H}^{-}} \right]=-\log \left\{ \dfrac{{{K}_{b}}\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]} \right\}$
We know that,$pH=-\log \left[ {{H}^{+}} \right]$
Therefore, we can write that $pOH=-\log \left[ O{{H}^{-}} \right]$
Therefore, the equation becomes $pOH=-\log {{K}_{b}}-\log \left\{ \dfrac{\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]} \right\}$
Or, we can rewrite this as $pOH=p{{K}_{b}}+\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\}$
We know that$pH=14-pOH$
Therefore, in the equation we can put the value of pOH to get the pH as-
$pH=14-\left( p{{K}_{b}}+\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\} \right)$
Or,$pH=14-p{{K}_{b}}-\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\}$
In the above equation, $N{{H}_{4}}^{+}$is the salt and$N{{H}_{4}}OH$is the base. Therefore, we can
write the equation as-
$pH=14-p{{K}_{b}}-\log \left\{ \dfrac{\left[ salt \right]}{\left[ base \right]} \right\}$
Therefore, the correct answer is option [C] $pH=14-p{{K}_{b}}-\log \dfrac{\left[ salt \right]}{\left[ base \right]}$.
Note: Here, we cannot calculate the acidity directly as the given buffer is a basic buffer. The pH of a buffer solution depends only on the ratio of concentration of the salt and base (or salt and acid in case of acidic buffer) and not on the individual concentrations of the salt and the base. If we make the solution dilute the ratio will remain unchanged thus, the pH will also remain unchanged. The pH will change only on the addition of ${{H}^{+}}$ or $O{{H}^{-}}$ ions.
Complete answer:
Generally, we define buffer solution as a solution which is resistant to change in pH upon addition of a small amount of base or acid. Buffer solution usually consists of a weak acid and salt of its conjugate base or of a weak base and a salt of its conjugate acid.
Here, we have$N{{H}_{4}}OH+N{{H}_{4}}Cl$ which is a basic buffer as $N{{H}_{4}}OH$ is a weak base and $N{{H}_{4}}Cl$ is a salt of its conjugate acid which is $N{{H}_{4}}^{+}$.
The pH of a buffer solution is calculated by the Henderson-Hasselbalch equation. We can derive this equation as follows.
The weak base will dissociate as-
$N{{H}_{4}}OH\rightleftharpoons N{{H}_{4}}^{+}+O{{H}^{-}}$
Therefore, we can write the base dissociation constant${{K}_{b}}$as-
${{K}_{b}}=\dfrac{\left[ N{{H}_{4}}^{+} \right]\left[ O{{H}^{-}} \right]}{\left[ N{{H}_{4}}OH \right]}$, which is the product of concentration of the dissociated ions divided by the concentration of the base.
From the above equation, we can write that$\left[ O{{H}^{-}} \right]=\dfrac{{{K}_{b}}\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]}$
Taking negative log on both sides, we will get
$-\log \left[ O{{H}^{-}} \right]=-\log \left\{ \dfrac{{{K}_{b}}\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]} \right\}$
We know that,$pH=-\log \left[ {{H}^{+}} \right]$
Therefore, we can write that $pOH=-\log \left[ O{{H}^{-}} \right]$
Therefore, the equation becomes $pOH=-\log {{K}_{b}}-\log \left\{ \dfrac{\left[ N{{H}_{4}}OH \right]}{\left[ N{{H}_{4}}^{+} \right]} \right\}$
Or, we can rewrite this as $pOH=p{{K}_{b}}+\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\}$
We know that$pH=14-pOH$
Therefore, in the equation we can put the value of pOH to get the pH as-
$pH=14-\left( p{{K}_{b}}+\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\} \right)$
Or,$pH=14-p{{K}_{b}}-\log \left\{ \dfrac{\left[ N{{H}_{4}}^{+} \right]}{\left[ N{{H}_{4}}OH \right]} \right\}$
In the above equation, $N{{H}_{4}}^{+}$is the salt and$N{{H}_{4}}OH$is the base. Therefore, we can
write the equation as-
$pH=14-p{{K}_{b}}-\log \left\{ \dfrac{\left[ salt \right]}{\left[ base \right]} \right\}$
Therefore, the correct answer is option [C] $pH=14-p{{K}_{b}}-\log \dfrac{\left[ salt \right]}{\left[ base \right]}$.
Note: Here, we cannot calculate the acidity directly as the given buffer is a basic buffer. The pH of a buffer solution depends only on the ratio of concentration of the salt and base (or salt and acid in case of acidic buffer) and not on the individual concentrations of the salt and the base. If we make the solution dilute the ratio will remain unchanged thus, the pH will also remain unchanged. The pH will change only on the addition of ${{H}^{+}}$ or $O{{H}^{-}}$ ions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE