
The pH of 0.1 molar solution of the acid HQ is 3. The value of the ionization constant ${{K}_{a}}$ of this acid is:
(A) 3 x ${{10}^{-1}}$
(B) 1 x ${{10}^{-3}}$
(C) 1 x ${{10}^{-5}}$
(D) 1 x ${{10}^{-7}}$
Answer
567k+ views
Hint: Write down the dissociation of the base in water. Find the equilibrium constant for the dissociation process with the degree of dissociation. The formula for equilibrium constant is given below. ${{K}_{a}}$ will be equal to the equilibrium constant calculated.
Formula: ${{\text{K}}_{\text{c}}}\text{=}\dfrac{\text{Concentration}{{\text{n}}_{{}}}\text{o}{{\text{f}}_{{}}}\text{products}}{\text{Concentration}{{\text{n}}_{{}}}\text{o}{{\text{f}}_{{}}}\text{reactants}}$
Complete step-by-step answer:
Let us write down the dissociation of a monoacidic base say HQ,
$\text{HQ }\to \text{ }{{\text{H}}^{\text{+}}}\text{ + }{{\text{Q}}^{\text{-}}}$
From the above dissociation we will now calculate the equilibrium constant for the reaction.
$\begin{matrix}
{} \\
initial\ concentration \\
final\ concentration \\
\end{matrix}\text{ }\begin{matrix}
HQ \\
c \\
c(1-\alpha ) \\
\end{matrix}\text{ }\begin{matrix}
\xrightarrow{reversible} \\
{} \\
{} \\
\end{matrix}\text{ }\begin{matrix}
{{H}^{+}} \\
0 \\
c\alpha \\
\end{matrix}\text{ }\begin{matrix}
O{{H}^{-}} \\
0 \\
c\alpha \\
\end{matrix}\text{ }$
Where,
$\alpha $stands for a degree of dissociation.
We will now substitute the values in the above formula,
${{\text{K}}_{a}}\text{=}\dfrac{\text{Concentration of products}}{\text{Concentration of reactants}}$
${{\text{K}}_{a}}\text{=}\dfrac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )}$
The value of pH given to us is 3.
$\begin{align}
& pH=-\log ([{{H}^{+}}]) \\
& 3=-\log ([{{H}^{+}}]) \\
& [{{H}^{+}}]=\text{antilog(-3)} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{+}}]={{10}^{-3}} \\
\end{align}$
$\begin{align}
& 0.1\alpha =\text{ 1}{{\text{0}}^{-3}} \\
& \alpha =\text{1}{{\text{0}}^{-2}} \\
\end{align}$
Substituting the value of $\alpha $in the equation,
${{\text{K}}_{a}}\text{=}\dfrac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )}$
We get,
$\begin{align}
& {{\text{K}}_{a}}=0.1{{\alpha }^{2}} \\
& {{\text{K}}_{a}}={{10}^{-5}} \\
\end{align}$
The value of the ionization constant ${{K}_{a}}$ of this acid is 1 x ${{10}^{-5}}$.
Therefore, the correct answer is option (C).
Additional information: The ionic product of water is mainly used for calculating pOH value when pH is given to us or vice versa.
The relation between the three quantities is,
pH + pOH = p${{K}_{w}}$ = 14.
Where, ${{K}_{w}}$ is defined as the ionic product of water.
The ionic product of water depends primarily on temperature .The ionic product of water is ${{10}^{-14}}$ considering the temperature to be ${{25}^{o}}C$ . When the temperature is increased to ${{100}^{o}}C$
the ionic product of water becomes ${{10}^{-12}}$.
Note: In the above calculation we have ignored the value$(1-\alpha )$ in the denominator. This is because the value of $\alpha \ll 1$.
Formula: ${{\text{K}}_{\text{c}}}\text{=}\dfrac{\text{Concentration}{{\text{n}}_{{}}}\text{o}{{\text{f}}_{{}}}\text{products}}{\text{Concentration}{{\text{n}}_{{}}}\text{o}{{\text{f}}_{{}}}\text{reactants}}$
Complete step-by-step answer:
Let us write down the dissociation of a monoacidic base say HQ,
$\text{HQ }\to \text{ }{{\text{H}}^{\text{+}}}\text{ + }{{\text{Q}}^{\text{-}}}$
From the above dissociation we will now calculate the equilibrium constant for the reaction.
$\begin{matrix}
{} \\
initial\ concentration \\
final\ concentration \\
\end{matrix}\text{ }\begin{matrix}
HQ \\
c \\
c(1-\alpha ) \\
\end{matrix}\text{ }\begin{matrix}
\xrightarrow{reversible} \\
{} \\
{} \\
\end{matrix}\text{ }\begin{matrix}
{{H}^{+}} \\
0 \\
c\alpha \\
\end{matrix}\text{ }\begin{matrix}
O{{H}^{-}} \\
0 \\
c\alpha \\
\end{matrix}\text{ }$
Where,
$\alpha $stands for a degree of dissociation.
We will now substitute the values in the above formula,
${{\text{K}}_{a}}\text{=}\dfrac{\text{Concentration of products}}{\text{Concentration of reactants}}$
${{\text{K}}_{a}}\text{=}\dfrac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )}$
The value of pH given to us is 3.
$\begin{align}
& pH=-\log ([{{H}^{+}}]) \\
& 3=-\log ([{{H}^{+}}]) \\
& [{{H}^{+}}]=\text{antilog(-3)} \\
& \text{ }\!\![\!\!\text{ }{{\text{H}}^{+}}]={{10}^{-3}} \\
\end{align}$
$\begin{align}
& 0.1\alpha =\text{ 1}{{\text{0}}^{-3}} \\
& \alpha =\text{1}{{\text{0}}^{-2}} \\
\end{align}$
Substituting the value of $\alpha $in the equation,
${{\text{K}}_{a}}\text{=}\dfrac{(0.1\alpha )(0.1\alpha )}{0.1(1-\alpha )}$
We get,
$\begin{align}
& {{\text{K}}_{a}}=0.1{{\alpha }^{2}} \\
& {{\text{K}}_{a}}={{10}^{-5}} \\
\end{align}$
The value of the ionization constant ${{K}_{a}}$ of this acid is 1 x ${{10}^{-5}}$.
Therefore, the correct answer is option (C).
Additional information: The ionic product of water is mainly used for calculating pOH value when pH is given to us or vice versa.
The relation between the three quantities is,
pH + pOH = p${{K}_{w}}$ = 14.
Where, ${{K}_{w}}$ is defined as the ionic product of water.
The ionic product of water depends primarily on temperature .The ionic product of water is ${{10}^{-14}}$ considering the temperature to be ${{25}^{o}}C$ . When the temperature is increased to ${{100}^{o}}C$
the ionic product of water becomes ${{10}^{-12}}$.
Note: In the above calculation we have ignored the value$(1-\alpha )$ in the denominator. This is because the value of $\alpha \ll 1$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

