
The period of the function \[{3^{({{\sin }^2}\pi x + x - [x] + {{\sin }^4}\pi x)}}\], where [.] denote the greatest integer function, is
Answer
588.9k+ views
Hint: We will start solving this question by simplifying the given function. We will simplify the exponent in the function and then we will find the period of each term we get after simplification for simplification, we will use the properties of trigonometry.
Complete step-by-step answer:
We will first simplify the term given in the exponent of the function. For simplification, we will use the trigonometric properties of ${\sin ^2}x$.
Now, we know that ${\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Therefore, from the above property, we get
${\sin ^2}\pi x = \dfrac{{1 - \cos 2\pi x}}{2}$
Also, ${\sin ^4}\pi x = {({\sin ^2}\pi x)^2}$
Therefore, using the above property, we get
${\sin ^4}\pi x = {\left( {\dfrac{{1 - \cos 2\pi x}}{2}} \right)^2}$
Using ${(a + b)^2} = {a^2} + {b^2} + 2ab$, we get
${\sin ^4}\pi x = \dfrac{1}{4}(1 + {\cos ^2}2\pi x - 2\cos 2\pi x)$
${\sin ^4}\pi x = \dfrac{3}{8}(3 + \cos 4\pi x - 4\cos 2\pi x)$
Now, the period of $\cos Ax$ is $\dfrac{{2\pi }}{A}$. Therefore, the period of $\cos 2\pi x = \dfrac{{2\pi }}{{2\pi }} = 1$
So, the period of ${\sin ^2}\pi x$ = 1
Similarly, period of $\cos 4\pi x$ = $\dfrac{{2\pi }}{{4\pi }} = \dfrac{1}{2}$ and the period of $\cos 2\pi x = \dfrac{{2\pi }}{{2\pi }} = 1$ .
Therefore, the period of ${\sin ^4}\pi x$ is LCM (1, $\dfrac{1}{2}$)
Now, LCM of two numbers are calculated as LCM of numerator divided by HCF of denominator. Therefore, we get
LCM (1, $\dfrac{1}{2}$) = LCM (1,1)/HCF (1,2) = 1/1 = 1
So, the period of ${\sin ^4}\pi x$ is 1. … (2)
Now, x – [x] = {x}, which is known as a fractional part of a number. The fractional part of the number has a period 1. So, the period of {x} is 1.
Therefore, the period of x – [x] is 1. … (3)
So, from equation (1), (2) and (3), we get
Period of \[{3^{({{\sin }^2}\pi x + x - [x] + {{\sin }^4}\pi x)}}\] is 1.
Note: Whenever we come up with such problems, we will first start by simplifying the given function. We will do this by using properties of trigonometric, logarithmic, exponential, etc. After simplifying the given function, we will find the period of each and every term of the function and after it the period of the function can be found easily. The period should be found correctly by using the correct formula.
Complete step-by-step answer:
We will first simplify the term given in the exponent of the function. For simplification, we will use the trigonometric properties of ${\sin ^2}x$.
Now, we know that ${\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$
Therefore, from the above property, we get
${\sin ^2}\pi x = \dfrac{{1 - \cos 2\pi x}}{2}$
Also, ${\sin ^4}\pi x = {({\sin ^2}\pi x)^2}$
Therefore, using the above property, we get
${\sin ^4}\pi x = {\left( {\dfrac{{1 - \cos 2\pi x}}{2}} \right)^2}$
Using ${(a + b)^2} = {a^2} + {b^2} + 2ab$, we get
${\sin ^4}\pi x = \dfrac{1}{4}(1 + {\cos ^2}2\pi x - 2\cos 2\pi x)$
${\sin ^4}\pi x = \dfrac{3}{8}(3 + \cos 4\pi x - 4\cos 2\pi x)$
Now, the period of $\cos Ax$ is $\dfrac{{2\pi }}{A}$. Therefore, the period of $\cos 2\pi x = \dfrac{{2\pi }}{{2\pi }} = 1$
So, the period of ${\sin ^2}\pi x$ = 1
Similarly, period of $\cos 4\pi x$ = $\dfrac{{2\pi }}{{4\pi }} = \dfrac{1}{2}$ and the period of $\cos 2\pi x = \dfrac{{2\pi }}{{2\pi }} = 1$ .
Therefore, the period of ${\sin ^4}\pi x$ is LCM (1, $\dfrac{1}{2}$)
Now, LCM of two numbers are calculated as LCM of numerator divided by HCF of denominator. Therefore, we get
LCM (1, $\dfrac{1}{2}$) = LCM (1,1)/HCF (1,2) = 1/1 = 1
So, the period of ${\sin ^4}\pi x$ is 1. … (2)
Now, x – [x] = {x}, which is known as a fractional part of a number. The fractional part of the number has a period 1. So, the period of {x} is 1.
Therefore, the period of x – [x] is 1. … (3)
So, from equation (1), (2) and (3), we get
Period of \[{3^{({{\sin }^2}\pi x + x - [x] + {{\sin }^4}\pi x)}}\] is 1.
Note: Whenever we come up with such problems, we will first start by simplifying the given function. We will do this by using properties of trigonometric, logarithmic, exponential, etc. After simplifying the given function, we will find the period of each and every term of the function and after it the period of the function can be found easily. The period should be found correctly by using the correct formula.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

