
The period of function \[f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin 4x}}\] is
1) \[\pi \]
2) \[2\pi \]
3) \[\dfrac{\pi }{2}\]
4) None of these
Answer
496.2k+ views
Hint: Here in this question we have to determine the period of a trigonometric function. Since the given trigonometric function is a difference or sum of a product of the trigonometric functions. So on considering the transformation formulas we are going to obtain the solution for the given question.
Complete step by step answer:
In trigonometry we have 6 trigonometric ratios namely, sine, cosine, tangent, cosecant, secant and cotangent. These ratios are abbreviated as sin, cos, tan, csc, sec and cot.
Now consider the given question
\[ \Rightarrow f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos x - \sin 3x\sin 4x}}\]
By the transformations formulas we have \[\sin a\cos b = \dfrac{1}{2}\left[ {\sin (a + b) + \sin (a - b)} \right]\], \[\cos a\cos b = \dfrac{1}{2}\left[ {\cos (a + b) + \cos (a - b)} \right]\] and \[\sin a\sin b = - \dfrac{1}{2}\left[ {\cos (a + b) - \cos (a - b)} \right]\], where a and b represents the angle. Now the above function can be written as
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin (8x + x) + \sin (8x - x)} \right) - \dfrac{1}{2}\left( {\sin (6x + 3x) + \sin (6x - 3x)} \right)}}{{\dfrac{1}{2}\left( {\cos (2x + x) + \cos (2x - x)} \right) + \dfrac{1}{2}\left( {\cos (3x + 4x) - \cos (4x - 3x)} \right)}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin 9x + \sin 7x} \right) - \dfrac{1}{2}\left( {\sin 9x + \sin 3x} \right)}}{{\dfrac{1}{2}\left( {\cos 3x + \cos x} \right) + \dfrac{1}{2}\left( {\cos 7x - \cos x} \right)}}\]
Take \[\dfrac{1}{2}\] as common in both numerator and denominator and we have
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left[ {\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)} \right]}}{{\dfrac{1}{2}\left[ {\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)} \right]}}\]
On cancelling the terms we have
\[ \Rightarrow f(x) = \dfrac{{\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)}}{{\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)}}\]
On applying the sign conventions, the above function can be written as
\[ \Rightarrow f(x) = \dfrac{{\sin 9x + \sin 7x - \sin 9x - \sin 3x}}{{\cos 3x + \cos x + \cos 7x - \cos x}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{\sin 7x - \sin 3x}}{{\cos 3x + \cos 7x}}\]
By the transformations formulas we have \[\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So applying these formulas to the above function we have
\[ \Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{7x + 3x}}{2}} \right)\sin \left( {\dfrac{{7x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{3x + 7x}}{2}} \right)\cos \left( {\dfrac{{3x - 7x}}{2}} \right)}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right)}}{{2\cos \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)}}\]
On cancelling terms and on dividing we have
\[ \Rightarrow f(x) = \dfrac{{\cos 5x\sin 2x}}{{\cos 5x\cos 2x}}\]
On cancelling the terms we have
\[ \Rightarrow f(x) = \dfrac{{\sin 2x}}{{\cos 2x}}\]
As we know, the ratio of sine trigonometric ratio to the cosine trigonometric ratio is the tangent trigonometric ratio.
This can be written as
\[ \Rightarrow f(x) = \tan 2x\]
As we know that the period for the tangent trigonometric ratio is \[{\pi }\]
Therefore the period of function \[f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin 4x}}\] is \[\dfrac{\pi }{2}\]
Here we had angle 2x so the period is \[\dfrac{\pi }{2}\].
So, the correct answer is “Option 3”.
Note: The student must know about the transformation formulae. They are defined as follows:
\[1.\,\,sinAcosB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }} + {\text{ }}sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[2.\,\,cosA{\text{ }}.sinB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }}-\;sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[3.\,\,cosAcosB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }} + {\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[
4.\,\,sinA{\text{ }}.sinB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }}-{\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right] \\
5.\;\,\,sinC{\text{ }} + {\text{ }}sinD{\text{ }} = {\text{ }}2sin\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\
6.\;\,\,sinC{\text{ }}-\;sinD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)\;sin\left( {\dfrac{{C - D}}{2}} \right) \\
7.\;\;cosC{\text{ }} + {\text{ }}cosD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\
8.\;\,\,cosC{\text{ }}-{\text{ }}cosD{\text{ }} = {\text{ }}-2sin\left( {\dfrac{{C + D}}{2}} \right)sin\left( {\dfrac{{C - D}}{2}} \right) \\
\]
These formulas are simplified forms of the sum and difference formulas of trigonometric ratios.
Complete step by step answer:
In trigonometry we have 6 trigonometric ratios namely, sine, cosine, tangent, cosecant, secant and cotangent. These ratios are abbreviated as sin, cos, tan, csc, sec and cot.
Now consider the given question
\[ \Rightarrow f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos x - \sin 3x\sin 4x}}\]
By the transformations formulas we have \[\sin a\cos b = \dfrac{1}{2}\left[ {\sin (a + b) + \sin (a - b)} \right]\], \[\cos a\cos b = \dfrac{1}{2}\left[ {\cos (a + b) + \cos (a - b)} \right]\] and \[\sin a\sin b = - \dfrac{1}{2}\left[ {\cos (a + b) - \cos (a - b)} \right]\], where a and b represents the angle. Now the above function can be written as
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin (8x + x) + \sin (8x - x)} \right) - \dfrac{1}{2}\left( {\sin (6x + 3x) + \sin (6x - 3x)} \right)}}{{\dfrac{1}{2}\left( {\cos (2x + x) + \cos (2x - x)} \right) + \dfrac{1}{2}\left( {\cos (3x + 4x) - \cos (4x - 3x)} \right)}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left( {\sin 9x + \sin 7x} \right) - \dfrac{1}{2}\left( {\sin 9x + \sin 3x} \right)}}{{\dfrac{1}{2}\left( {\cos 3x + \cos x} \right) + \dfrac{1}{2}\left( {\cos 7x - \cos x} \right)}}\]
Take \[\dfrac{1}{2}\] as common in both numerator and denominator and we have
\[ \Rightarrow f(x) = \dfrac{{\dfrac{1}{2}\left[ {\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)} \right]}}{{\dfrac{1}{2}\left[ {\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)} \right]}}\]
On cancelling the terms we have
\[ \Rightarrow f(x) = \dfrac{{\left( {\sin 9x + \sin 7x} \right) - \left( {\sin 9x + \sin 3x} \right)}}{{\left( {\cos 3x + \cos x} \right) + \left( {\cos 7x - \cos x} \right)}}\]
On applying the sign conventions, the above function can be written as
\[ \Rightarrow f(x) = \dfrac{{\sin 9x + \sin 7x - \sin 9x - \sin 3x}}{{\cos 3x + \cos x + \cos 7x - \cos x}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{\sin 7x - \sin 3x}}{{\cos 3x + \cos 7x}}\]
By the transformations formulas we have \[\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right)\] and \[\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)\]. So applying these formulas to the above function we have
\[ \Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{7x + 3x}}{2}} \right)\sin \left( {\dfrac{{7x - 3x}}{2}} \right)}}{{2\cos \left( {\dfrac{{3x + 7x}}{2}} \right)\cos \left( {\dfrac{{3x - 7x}}{2}} \right)}}\]
On simplifying we have
\[ \Rightarrow f(x) = \dfrac{{2\cos \left( {\dfrac{{10x}}{2}} \right)\sin \left( {\dfrac{{4x}}{2}} \right)}}{{2\cos \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)}}\]
On cancelling terms and on dividing we have
\[ \Rightarrow f(x) = \dfrac{{\cos 5x\sin 2x}}{{\cos 5x\cos 2x}}\]
On cancelling the terms we have
\[ \Rightarrow f(x) = \dfrac{{\sin 2x}}{{\cos 2x}}\]
As we know, the ratio of sine trigonometric ratio to the cosine trigonometric ratio is the tangent trigonometric ratio.
This can be written as
\[ \Rightarrow f(x) = \tan 2x\]
As we know that the period for the tangent trigonometric ratio is \[{\pi }\]
Therefore the period of function \[f(x) = \dfrac{{\sin 8x\cos x - \sin 6x\cos 3x}}{{\cos 2x\cos - \sin 3x\sin 4x}}\] is \[\dfrac{\pi }{2}\]
Here we had angle 2x so the period is \[\dfrac{\pi }{2}\].
So, the correct answer is “Option 3”.
Note: The student must know about the transformation formulae. They are defined as follows:
\[1.\,\,sinAcosB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }} + {\text{ }}sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[2.\,\,cosA{\text{ }}.sinB{\text{ }} = \left[ {sin\left( {A + B} \right){\text{ }}-\;sin\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[3.\,\,cosAcosB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }} + {\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right]\]
\[
4.\,\,sinA{\text{ }}.sinB{\text{ }} = \left[ {cos\left( {A + B} \right){\text{ }}-{\text{ }}cos\left( {A{\text{ }}-{\text{ }}B} \right)} \right] \\
5.\;\,\,sinC{\text{ }} + {\text{ }}sinD{\text{ }} = {\text{ }}2sin\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\
6.\;\,\,sinC{\text{ }}-\;sinD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)\;sin\left( {\dfrac{{C - D}}{2}} \right) \\
7.\;\;cosC{\text{ }} + {\text{ }}cosD{\text{ }} = {\text{ }}2cos\left( {\dfrac{{C + D}}{2}} \right)cos\left( {\dfrac{{C - D}}{2}} \right) \\
8.\;\,\,cosC{\text{ }}-{\text{ }}cosD{\text{ }} = {\text{ }}-2sin\left( {\dfrac{{C + D}}{2}} \right)sin\left( {\dfrac{{C - D}}{2}} \right) \\
\]
These formulas are simplified forms of the sum and difference formulas of trigonometric ratios.
Recently Updated Pages
Which postulates of Daltons atomic theory can explain class 11 chemistry CBSE

How do you calculate the formal charge of O3 class 11 chemistry CBSE

Draw an electron dot diagram to show the formation class 11 chemistry CBSE

Three identical rods each of mass m and length l form class 11 physics CBSE

State and derive theorem for parallel and perpendicular class 11 physics CBSE

A cubic block is floating in a liquid with half of class 11 physics CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

