
The perimeter of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12cm, determine the corresponding side of the second triangle.
Answer
565.5k+ views
Hint: In this particular question use the concept that perimeter of any shape is the sum of all the sides length, and use the concept that in similar triangles the ratio of their corresponding sides are equal so, use these concepts to reach the solution of the question.
Complete step-by-step answer:
Let ABC and abc are two similar triangles as shown in the above figure.
The sides of the triangle ABC are x, y and z cm respectively.
And the sides of the triangle abc are p, q and r cm respectively.
Now it is given that one of the sides of the triangle ABC is 12 cm.
Let, x = 12cm as shown in the above figure.
So we have to find the corresponding side of the similar triangle.
I.e. P =?
Now it is given that the perimeter of triangles are 30 and 20 cm respectively.
So, ${P_{ABC}} = 30$cm, and ${P_{abc}} = 20$cm.
Now as we know that the perimeter is the sum of all the side lengths.
So, 30 = x + y + z............... (1)
And 20 = p + q + r................ (2)
Now as we know that in similar triangles the ratio of their corresponding sides are equal.
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r}\]
Let the ratio is equal to the constant value K, so we have,
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r} = K\]............... (3)
$ \Rightarrow x = Kp$, $y = Kq$, and $z = Kr$
Now add these three equation we have,
$ \Rightarrow x + y + z = K\left( {p + q + r} \right)$
Now from equation (1) and (2) we have,
$ \Rightarrow 30 = K\left( {20} \right)$
$ \Rightarrow K = \dfrac{3}{2}$
Now from equation (3) we have,
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{12}}{p} = \dfrac{y}{q} = \dfrac{z}{r} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{12}}{p} = \dfrac{3}{2}\]
\[ \Rightarrow p = 12 \times \dfrac{2}{3} = 8\] cm.
So the corresponding side of the similar triangle is 8cm.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the definition of perimeter of any shape which is stated above, and also recall the properties of similar triangle, so first apply the property and write the values of sides of one triangle in terms of the corresponding sides of the similar triangle as above, then add them as above and substitute the values of perimeter and again simplify we will get the required answer.
Complete step-by-step answer:
Let ABC and abc are two similar triangles as shown in the above figure.
The sides of the triangle ABC are x, y and z cm respectively.
And the sides of the triangle abc are p, q and r cm respectively.
Now it is given that one of the sides of the triangle ABC is 12 cm.
Let, x = 12cm as shown in the above figure.
So we have to find the corresponding side of the similar triangle.
I.e. P =?
Now it is given that the perimeter of triangles are 30 and 20 cm respectively.
So, ${P_{ABC}} = 30$cm, and ${P_{abc}} = 20$cm.
Now as we know that the perimeter is the sum of all the side lengths.
So, 30 = x + y + z............... (1)
And 20 = p + q + r................ (2)
Now as we know that in similar triangles the ratio of their corresponding sides are equal.
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r}\]
Let the ratio is equal to the constant value K, so we have,
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r} = K\]............... (3)
$ \Rightarrow x = Kp$, $y = Kq$, and $z = Kr$
Now add these three equation we have,
$ \Rightarrow x + y + z = K\left( {p + q + r} \right)$
Now from equation (1) and (2) we have,
$ \Rightarrow 30 = K\left( {20} \right)$
$ \Rightarrow K = \dfrac{3}{2}$
Now from equation (3) we have,
\[ \Rightarrow \dfrac{x}{p} = \dfrac{y}{q} = \dfrac{z}{r} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{12}}{p} = \dfrac{y}{q} = \dfrac{z}{r} = \dfrac{3}{2}\]
\[ \Rightarrow \dfrac{{12}}{p} = \dfrac{3}{2}\]
\[ \Rightarrow p = 12 \times \dfrac{2}{3} = 8\] cm.
So the corresponding side of the similar triangle is 8cm.
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the definition of perimeter of any shape which is stated above, and also recall the properties of similar triangle, so first apply the property and write the values of sides of one triangle in terms of the corresponding sides of the similar triangle as above, then add them as above and substitute the values of perimeter and again simplify we will get the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

