
The perimeter of triangle with vertices at (1,0,0).(0,1,0) and (0,0,1) is:-
a.)3 b.) 2 c.) $2\sqrt 2 $ d.) $3\sqrt 2 $
Answer
596.4k+ views
Hint:- The given question can be done using the distance formula in the three coordinate plane $\left( {x,y,z} \right).$
Complete step-by-step answer:
In this problem, we are asked for the perimeter of the triangle. Perimeter means sum of all the sides of a figure i.e closed figure.
So, the perimeter of the triangle means the sum of all the sides of the triangle. So at first, we would find all the sides of the triangle.
Complete step-by-step answer:
In this problem, we are asked for the perimeter of the triangle. Perimeter means sum of all the sides of a figure i.e closed figure.
So, the perimeter of the triangle means the sum of all the sides of the triangle. So at first, we would find all the sides of the triangle.
By using distance formula, we would find the sides, AB, BC, and AC;
So, AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( {{z_1} - {z_2}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} $
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2} + {0^2}} $
$ = \sqrt {1 + 1 + 0} = \sqrt 2 $
Similarly, BC $ = \sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} - {{\left( {{y_3} - {y_2}} \right)}^2} + {{\left( {{z_3} - {z_2}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {0 + 1} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
$ = \sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
=$\sqrt 2 $
Similarly, AC = $ = \sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2} + {{\left( {{z_3} - {z_1}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 1 \right)}^2}} $
$\sqrt {1 + 0 + 1} \;\; = \,\sqrt 2 $
Hence, perimeter of triangle is given by:-
AB + BC + AC
$ = \sqrt 2 + \sqrt 2 + \sqrt 2 $
$3\sqrt 2 $
Note:- The distance formula for the three coordinate plane with points ${\text{A}}\left( {{x_1},{y_1},{z_1}} \right)$ and B $\left( {{x_2},{y_2},{z_2}} \right)$ are:-
AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $
So, AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( {{z_1} - {z_2}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} $
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2} + {0^2}} $
$ = \sqrt {1 + 1 + 0} = \sqrt 2 $
Similarly, BC $ = \sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} - {{\left( {{y_3} - {y_2}} \right)}^2} + {{\left( {{z_3} - {z_2}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {0 + 1} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
$ = \sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
=$\sqrt 2 $
Similarly, AC = $ = \sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2} + {{\left( {{z_3} - {z_1}} \right)}^2}} $
$ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
$ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 1 \right)}^2}} $
$\sqrt {1 + 0 + 1} \;\; = \,\sqrt 2 $
Hence, perimeter of triangle is given by:-
AB + BC + AC
$ = \sqrt 2 + \sqrt 2 + \sqrt 2 $
$3\sqrt 2 $
Note:- The distance formula for the three coordinate plane with points ${\text{A}}\left( {{x_1},{y_1},{z_1}} \right)$ and B $\left( {{x_2},{y_2},{z_2}} \right)$ are:-
AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

