Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The perimeter of triangle with vertices at (1,0,0).(0,1,0) and (0,0,1) is:-
a.)3 b.) 2 c.) $2\sqrt 2 $ d.) $3\sqrt 2 $


Answer
VerifiedVerified
596.4k+ views
Hint:- The given question can be done using the distance formula in the three coordinate plane $\left( {x,y,z} \right).$

Complete step-by-step answer:
In this problem, we are asked for the perimeter of the triangle. Perimeter means sum of all the sides of a figure i.e closed figure.
So, the perimeter of the triangle means the sum of all the sides of the triangle. So at first, we would find all the sides of the triangle.
By using distance formula, we would find the sides, AB, BC, and AC;
So, AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2} + {{\left( {{z_1} - {z_2}} \right)}^2}} $
     $ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}} $
     $ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2} + {0^2}} $
     $ = \sqrt {1 + 1 + 0} = \sqrt 2 $
Similarly, BC $ = \sqrt {{{\left( {{x_3} - {x_2}} \right)}^2} - {{\left( {{y_3} - {y_2}} \right)}^2} + {{\left( {{z_3} - {z_2}} \right)}^2}} $
          $ = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( {0 + 1} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
          $ = \sqrt {{0^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} $
          =$\sqrt 2 $
Similarly, AC = $ = \sqrt {{{\left( {{x_3} - {x_1}} \right)}^2} + {{\left( {{y_3} - {y_1}} \right)}^2} + {{\left( {{z_3} - {z_1}} \right)}^2}} $
          $ = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2} + {{\left( {1 - 0} \right)}^2}} $
          $ = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( 1 \right)}^2}} $
          $\sqrt {1 + 0 + 1} \;\; = \,\sqrt 2 $
Hence, perimeter of triangle is given by:-
     AB + BC + AC
     $ = \sqrt 2 + \sqrt 2 + \sqrt 2 $
     $3\sqrt 2 $

Note:- The distance formula for the three coordinate plane with points ${\text{A}}\left( {{x_1},{y_1},{z_1}} \right)$ and B $\left( {{x_2},{y_2},{z_2}} \right)$ are:-
AB $ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} $