Answer
Verified
429.9k+ views
Hint: Firstly, we will let the radius be $r$ and sectorial angle be $\theta $ . Given that, the perimeter of the sector is constant. Substitute the value of radius in the formula of area of the sector. Then, differentiate both sides with respect to $\theta $ . As the area is maximum so, we will put the differential value equal to zero and obtain the value of $\theta $. If the differentiated value is negative, then the area is maximum and the value of $\theta $ is correct otherwise not.
Complete step-by-step answer:
Let that the radius of the circle is $r$ and the sectorial angle be $\theta $ .
We draw a figure,
Now, the perimeter of the sector is given by $2r + r\theta $ , according to the question, the perimeter of the sector is constant.
$2r + r\theta = k$
We will evaluate the value of $r$ ,
$ \Rightarrow r = \dfrac{k}{{2 + \theta }}$
The area of sector is denoted by A and given by
$A = \dfrac{1}{2}{r^2}\theta $
Now, substitute the value of radius of the above formula of area,
We get,
$A = \dfrac{{{k^2}}}{2} \times \dfrac{\theta }{{{{(\theta + 2)}^2}}}$
We will differentiate the area on both side with respect to $\theta $ using the formula,
$\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left\{ {\dfrac{{{{(\theta + 2)}^2} - 2\theta (\theta + 2)}}{{{{(\theta + 2)}^4}}}} \right\} \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{(\theta + 2)(\theta + 2 - 2\theta )}}{{{{(\theta + 2)}^4}}}} \right) \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right)...........eq(1) \\
\ $
The area has to be maximum so, we will put the value of $\dfrac{{dA}}{{d\theta }}$ written as equation (1) equal to zero.
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = 0 \\
\Rightarrow \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right) = 0 \\
\Rightarrow 2 - \theta = 0 \\
\Rightarrow \theta = 2 \\
\ $
Again differentiate the equation (1) with respect to $\theta $ , we get,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{2( - 3)}}{{{{(\theta - 2)}^4}}} - \dfrac{{{{(\theta + 2)}^3} \times 1 - \theta \times 3{{(\theta + 2)}^2}}}{{{{\left[ {{{\left( {\theta + 2} \right)}^3}} \right]}^2}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{ - 6}}{{{{(\theta + 2)}^4}}} - \dfrac{{\theta + 2 - 3\theta }}{{{{(\theta + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(\theta + 2)}^4}}} + \dfrac{{2 - \theta }}{{{{\left( {\theta + 2} \right)}^4}}}} \right] \\
\ $
Now, we will substitute the value of $\theta = 2$
We have,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(2 + 2)}^4}}} + \dfrac{{2 - 2}}{{{{(2 + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(4)}^4}}} + 0} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - 3{k^2}}}{{256}} \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} \prec 0 \\
\ $
We can conclude that the area is maximum as the double derivative of the area is negative at $\theta = {2^C}$ .
Hence, option (D) is correct.
Note: When we remember that the area is maximum when the double derivative is negative and minimum when the double derivative is positive.
We need to find the value of $\theta $ to determine that the double derivative is negative or positive. we have to remember the formula of area and the perimeter of the sector.
Complete step-by-step answer:
Let that the radius of the circle is $r$ and the sectorial angle be $\theta $ .
We draw a figure,
Now, the perimeter of the sector is given by $2r + r\theta $ , according to the question, the perimeter of the sector is constant.
$2r + r\theta = k$
We will evaluate the value of $r$ ,
$ \Rightarrow r = \dfrac{k}{{2 + \theta }}$
The area of sector is denoted by A and given by
$A = \dfrac{1}{2}{r^2}\theta $
Now, substitute the value of radius of the above formula of area,
We get,
$A = \dfrac{{{k^2}}}{2} \times \dfrac{\theta }{{{{(\theta + 2)}^2}}}$
We will differentiate the area on both side with respect to $\theta $ using the formula,
$\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left\{ {\dfrac{{{{(\theta + 2)}^2} - 2\theta (\theta + 2)}}{{{{(\theta + 2)}^4}}}} \right\} \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{(\theta + 2)(\theta + 2 - 2\theta )}}{{{{(\theta + 2)}^4}}}} \right) \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right)...........eq(1) \\
\ $
The area has to be maximum so, we will put the value of $\dfrac{{dA}}{{d\theta }}$ written as equation (1) equal to zero.
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = 0 \\
\Rightarrow \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right) = 0 \\
\Rightarrow 2 - \theta = 0 \\
\Rightarrow \theta = 2 \\
\ $
Again differentiate the equation (1) with respect to $\theta $ , we get,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{2( - 3)}}{{{{(\theta - 2)}^4}}} - \dfrac{{{{(\theta + 2)}^3} \times 1 - \theta \times 3{{(\theta + 2)}^2}}}{{{{\left[ {{{\left( {\theta + 2} \right)}^3}} \right]}^2}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{ - 6}}{{{{(\theta + 2)}^4}}} - \dfrac{{\theta + 2 - 3\theta }}{{{{(\theta + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(\theta + 2)}^4}}} + \dfrac{{2 - \theta }}{{{{\left( {\theta + 2} \right)}^4}}}} \right] \\
\ $
Now, we will substitute the value of $\theta = 2$
We have,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(2 + 2)}^4}}} + \dfrac{{2 - 2}}{{{{(2 + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(4)}^4}}} + 0} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - 3{k^2}}}{{256}} \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} \prec 0 \\
\ $
We can conclude that the area is maximum as the double derivative of the area is negative at $\theta = {2^C}$ .
Hence, option (D) is correct.
Note: When we remember that the area is maximum when the double derivative is negative and minimum when the double derivative is positive.
We need to find the value of $\theta $ to determine that the double derivative is negative or positive. we have to remember the formula of area and the perimeter of the sector.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE