
The perimeter of a sector is a constant. If its area is to be maximum , then the sectorial angle is
A. $\dfrac{{{\pi }^{c}}}{6}$
B. $\dfrac{{{\pi }^{c}}}{4}$
C. ${{4}^{c}}$
D. ${{2}^{c}}$
Answer
531.3k+ views
Hint: To solve the above question first we will know the definition of sector or circle sector. A circle sector is the portion of a disk which is enclosed by two radii and an arc.
In the diagram, $\theta $ is the central angle, r is the radius of the circle. If $\theta $is measured in radians, then, area of sector = $\dfrac{1}{2}{{r}^{2}}\theta $ and the perimeter of the sector is $2r+r\theta $
Complete step by step solution:
Let r be the radius of the circle and $\theta $ be the sectorial angle of a sector of it. Then the perimeter of the sector is :
$\Rightarrow 2r+r\theta =k$
Where, k is the constant which is given in the question.
By above equation we will find the radius of the circle as:
$\Rightarrow r=\dfrac{k}{2+\theta }..........\left( 1 \right)$
Let A be the area of the sector, then we get
$\Rightarrow A=\dfrac{1}{2}{{r}^{2}}\theta $
Now put the value of r from equation (1) in the above equation, we get
$\Rightarrow A=\dfrac{1}{2}\cdot \dfrac{{{k}^{2}}}{{{\left( 2+\theta \right)}^{2}}}\cdot \theta $
Now on differentiating on both sides with respect to $\theta $, we get
$\begin{align}
& \Rightarrow \dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\left\{ \dfrac{{{\left( \theta +2 \right)}^{2}}-2\theta \left( \theta +2 \right)}{{{\left( \theta +2 \right)}^{4}}} \right\} \\
& \Rightarrow \dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}} \\
\end{align}$
For maximum area, put $\dfrac{dA}{d\theta }=0$
\[\begin{align}
& \Rightarrow 0=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}} \\
& \Rightarrow \theta =2 \\
\end{align}\]
Now again differentiating $\dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}}$, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{{{k}^{2}}}{2}\left[ \dfrac{2\times \left( -3 \right)}{{{\left( \theta -2 \right)}^{4}}}-\dfrac{{{\left( \theta +2 \right)}^{3}}\times 1-\theta \times 3{{\left( \theta +2 \right)}^{2}}}{{{\left[ {{\left( \theta +2 \right)}^{3}} \right]}^{2}}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{{{k}^{2}}}{2}\left[ \dfrac{-6}{{{\left( \theta +2 \right)}^{4}}}-\dfrac{\theta +2-3\theta }{{{\left( \theta +2 \right)}^{4}}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-{{k}^{2}}}{2}\left[ \dfrac{6}{{{\left( \theta +2 \right)}^{4}}}+\dfrac{2-\theta }{\left| {{\left( \theta +2 \right)}^{4}} \right|} \right] \\
\end{align}$
Now for maximum we already find out the value of $\theta =2$ , now put this value of $\theta $ in the above equation, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-{{k}^{2}}}{2}\left[ \dfrac{6}{{{4}^{4}}}+0 \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-3{{k}^{2}}}{256} \\
\end{align}$
Therefore the above value is greater than zero.
Hence the area is maximum, when $\theta ={{2}^{c}}$.
So, the correct answer is “Option D”.
Note: We can go wrong in the calculation part. Here to differentiate the area we use the quotient rule of differentiation which is as: $\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{u\grave{\ }v-v\grave{\ }u}{{{v}^{2}}}$ on both times . in $\theta ={{2}^{c}}$where c is the constant positive value.
In the diagram, $\theta $ is the central angle, r is the radius of the circle. If $\theta $is measured in radians, then, area of sector = $\dfrac{1}{2}{{r}^{2}}\theta $ and the perimeter of the sector is $2r+r\theta $
Complete step by step solution:
Let r be the radius of the circle and $\theta $ be the sectorial angle of a sector of it. Then the perimeter of the sector is :
$\Rightarrow 2r+r\theta =k$
Where, k is the constant which is given in the question.
By above equation we will find the radius of the circle as:
$\Rightarrow r=\dfrac{k}{2+\theta }..........\left( 1 \right)$
Let A be the area of the sector, then we get
$\Rightarrow A=\dfrac{1}{2}{{r}^{2}}\theta $
Now put the value of r from equation (1) in the above equation, we get
$\Rightarrow A=\dfrac{1}{2}\cdot \dfrac{{{k}^{2}}}{{{\left( 2+\theta \right)}^{2}}}\cdot \theta $
Now on differentiating on both sides with respect to $\theta $, we get
$\begin{align}
& \Rightarrow \dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\left\{ \dfrac{{{\left( \theta +2 \right)}^{2}}-2\theta \left( \theta +2 \right)}{{{\left( \theta +2 \right)}^{4}}} \right\} \\
& \Rightarrow \dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}} \\
\end{align}$
For maximum area, put $\dfrac{dA}{d\theta }=0$
\[\begin{align}
& \Rightarrow 0=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}} \\
& \Rightarrow \theta =2 \\
\end{align}\]
Now again differentiating $\dfrac{dA}{d\theta }=\dfrac{{{k}^{2}}}{2}\dfrac{\left( 2-\theta \right)}{{{\left( \theta +2 \right)}^{3}}}$, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{{{k}^{2}}}{2}\left[ \dfrac{2\times \left( -3 \right)}{{{\left( \theta -2 \right)}^{4}}}-\dfrac{{{\left( \theta +2 \right)}^{3}}\times 1-\theta \times 3{{\left( \theta +2 \right)}^{2}}}{{{\left[ {{\left( \theta +2 \right)}^{3}} \right]}^{2}}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{{{k}^{2}}}{2}\left[ \dfrac{-6}{{{\left( \theta +2 \right)}^{4}}}-\dfrac{\theta +2-3\theta }{{{\left( \theta +2 \right)}^{4}}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-{{k}^{2}}}{2}\left[ \dfrac{6}{{{\left( \theta +2 \right)}^{4}}}+\dfrac{2-\theta }{\left| {{\left( \theta +2 \right)}^{4}} \right|} \right] \\
\end{align}$
Now for maximum we already find out the value of $\theta =2$ , now put this value of $\theta $ in the above equation, we get
$\begin{align}
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-{{k}^{2}}}{2}\left[ \dfrac{6}{{{4}^{4}}}+0 \right] \\
& \Rightarrow \dfrac{{{d}^{2}}A}{d{{\theta }^{2}}}=\dfrac{-3{{k}^{2}}}{256} \\
\end{align}$
Therefore the above value is greater than zero.
Hence the area is maximum, when $\theta ={{2}^{c}}$.
So, the correct answer is “Option D”.
Note: We can go wrong in the calculation part. Here to differentiate the area we use the quotient rule of differentiation which is as: $\dfrac{d\left( \dfrac{u}{v} \right)}{dx}=\dfrac{u\grave{\ }v-v\grave{\ }u}{{{v}^{2}}}$ on both times . in $\theta ={{2}^{c}}$where c is the constant positive value.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

