Answer
Verified
454.8k+ views
Hint: First, we will use the perimeter of a rhombus is the same of all sides of the rhombus and then we will use the diagonal bisect each other at 90 degrees to apply the Pythagoras theorem.
Complete step-by-step answer:
We are given that the perimeter of a rhombus with one diagonal 24 cm long is the same as the perimeter of an equilateral triangle with side 20 cm.
Let us assume that the side of the rhombus is equal to \[l\].
We know that the perimeter of a rhombus is the same of all sides of the rhombus.
Since the sides of a rhombus are equal, so we have
\[
\Rightarrow l + l + l + l \\
\Rightarrow 4l \\
\]
Using the given condition, we will have
\[
\Rightarrow 3 \times 20 = 4l \\
\Rightarrow 60 = 4l \\
\]
Dividing the above equation on both sides by 4, we get
\[
\Rightarrow \dfrac{{60}}{4} = \dfrac{{4l}}{4} \\
\Rightarrow 15 = l \\
\Rightarrow l = 15 \\
\Rightarrow AB = 15{\text{ cm ......eq.(1)}} \\
\]
Since we know that the diagonal bisect each other AC is 24, we can get AO dividing it by 2, we get
\[
\Rightarrow AO = \dfrac{{24}}{2} \\
\Rightarrow AO = 12{\text{ cm ......eq.(2)}} \\
\]
Now we will take triangle \[AOB\],
Since we know that the diagonal bisect each other at 90 degrees, we apply the Pythagoras theorem, we get
\[ \Rightarrow A{O^2} + O{B^2} = A{B^2}\]
From equation (1) and equation (2) in the above expression, we get
\[
\Rightarrow {12^2} + O{B^2} = {15^2} \\
\Rightarrow 144 + O{B^2} = 225 \\
\]
Subtracting the above equation by 144 on both sides, we get
\[
\Rightarrow 144 + O{B^2} - 144 = 225 - 144 \\
\Rightarrow O{B^2} = 81 \\
\]
Taking square root both sides in the above equation, we get
\[
\Rightarrow OB = \pm \sqrt {81} \\
\Rightarrow OB = \pm 9 \\
\]
Since the length can never be negative, so the negative value of OB is discarded.
Thus, OB is 9.
Now we know that the diagonal BD is twice the OB, so we have
\[
\Rightarrow BD = 2\left( 9 \right) \\
\Rightarrow BD = 18 \\
\]
Therefore, the length of the diagonal is 18 cm.
Note: Do not forget to write the units with the final answer. In solving these types of questions, formulae should be used to compute the area of a rhombus where sides of the diagonal are given. One mistake that students make is considering the length of diagonals of a rhombus as the same, which is never true. The length of the diagonal of a rhombus is not the same. We know that lengths of the diagonals of squares are equal.
Complete step-by-step answer:
We are given that the perimeter of a rhombus with one diagonal 24 cm long is the same as the perimeter of an equilateral triangle with side 20 cm.
Let us assume that the side of the rhombus is equal to \[l\].
We know that the perimeter of a rhombus is the same of all sides of the rhombus.
Since the sides of a rhombus are equal, so we have
\[
\Rightarrow l + l + l + l \\
\Rightarrow 4l \\
\]
Using the given condition, we will have
\[
\Rightarrow 3 \times 20 = 4l \\
\Rightarrow 60 = 4l \\
\]
Dividing the above equation on both sides by 4, we get
\[
\Rightarrow \dfrac{{60}}{4} = \dfrac{{4l}}{4} \\
\Rightarrow 15 = l \\
\Rightarrow l = 15 \\
\Rightarrow AB = 15{\text{ cm ......eq.(1)}} \\
\]
Since we know that the diagonal bisect each other AC is 24, we can get AO dividing it by 2, we get
\[
\Rightarrow AO = \dfrac{{24}}{2} \\
\Rightarrow AO = 12{\text{ cm ......eq.(2)}} \\
\]
Now we will take triangle \[AOB\],
Since we know that the diagonal bisect each other at 90 degrees, we apply the Pythagoras theorem, we get
\[ \Rightarrow A{O^2} + O{B^2} = A{B^2}\]
From equation (1) and equation (2) in the above expression, we get
\[
\Rightarrow {12^2} + O{B^2} = {15^2} \\
\Rightarrow 144 + O{B^2} = 225 \\
\]
Subtracting the above equation by 144 on both sides, we get
\[
\Rightarrow 144 + O{B^2} - 144 = 225 - 144 \\
\Rightarrow O{B^2} = 81 \\
\]
Taking square root both sides in the above equation, we get
\[
\Rightarrow OB = \pm \sqrt {81} \\
\Rightarrow OB = \pm 9 \\
\]
Since the length can never be negative, so the negative value of OB is discarded.
Thus, OB is 9.
Now we know that the diagonal BD is twice the OB, so we have
\[
\Rightarrow BD = 2\left( 9 \right) \\
\Rightarrow BD = 18 \\
\]
Therefore, the length of the diagonal is 18 cm.
Note: Do not forget to write the units with the final answer. In solving these types of questions, formulae should be used to compute the area of a rhombus where sides of the diagonal are given. One mistake that students make is considering the length of diagonals of a rhombus as the same, which is never true. The length of the diagonal of a rhombus is not the same. We know that lengths of the diagonals of squares are equal.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE