
The perimeter of a quadrant of a circle of radius r is:
(a) $\dfrac{\pi r}{2}$
(b) $2\pi r$
(c) $\dfrac{r}{2}\left( \pi +4 \right)$
(d) $2\pi r+\dfrac{r}{2}$
Answer
582.9k+ views
Hint: Here, we will try to find the perimeter of the quadrant of a circle by using the formula for the perimeter of a circle which is $2\pi r$. We will the concept that a quadrant of a circle is one-fourth of a circle.
Complete step-by-step answer:
We know that a circle is defined as the locus of all the points that are equidistant from a fixed point called the centre of the circle. Now, a quadrant is one-fourth section of a circle which is obtained when a circle is divided evenly into four sections or rather 4 quadrants by a set of two lines which are perpendicular in nature.
Since, quadrant refers to the four quarters in the coordinate system. But, when it comes to a circle, the quarter of a circle is called a quadrant, which is a section of 90 degrees. When four such quadrants are joined, then we get a complete circle.
If the radius of a circle is r, then the perimeter of the circle is given as:
$P=2\pi r$
While finding the perimeter of a quadrant we need to add two times the radius of the circle to the perimeter of the curved boundary.
Perimeter of the curved boundary= $\dfrac{1}{4}\times 2\pi r$= $\dfrac{\pi r}{2}$
Now, on adding two times the radius of the circle to $\dfrac{\pi r}{2}$, we get:
$\begin{align}
& 2r+\dfrac{\pi r}{2} \\
& =\dfrac{r}{2}\left( \pi +4 \right) \\
\end{align}$
Hence, option (c) is the correct answer.
Note: Students should note here that the quadrant of a circle is one-fourth section of the circle. So, for finding the perimeter of the quadrant, we have to take one-fourth of the circumference of the circle. One should also keep in mind that two times the radius of the circle have to be added to on-fourth the circumference of the circle.
Complete step-by-step answer:
We know that a circle is defined as the locus of all the points that are equidistant from a fixed point called the centre of the circle. Now, a quadrant is one-fourth section of a circle which is obtained when a circle is divided evenly into four sections or rather 4 quadrants by a set of two lines which are perpendicular in nature.
Since, quadrant refers to the four quarters in the coordinate system. But, when it comes to a circle, the quarter of a circle is called a quadrant, which is a section of 90 degrees. When four such quadrants are joined, then we get a complete circle.
If the radius of a circle is r, then the perimeter of the circle is given as:
$P=2\pi r$
While finding the perimeter of a quadrant we need to add two times the radius of the circle to the perimeter of the curved boundary.
Perimeter of the curved boundary= $\dfrac{1}{4}\times 2\pi r$= $\dfrac{\pi r}{2}$
Now, on adding two times the radius of the circle to $\dfrac{\pi r}{2}$, we get:
$\begin{align}
& 2r+\dfrac{\pi r}{2} \\
& =\dfrac{r}{2}\left( \pi +4 \right) \\
\end{align}$
Hence, option (c) is the correct answer.
Note: Students should note here that the quadrant of a circle is one-fourth section of the circle. So, for finding the perimeter of the quadrant, we have to take one-fourth of the circumference of the circle. One should also keep in mind that two times the radius of the circle have to be added to on-fourth the circumference of the circle.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

