
The packing efficiency of the face centred cubic (fcc), body-centred cubic (bcc) and simple primitive cubic (pc) lattices follows the order:
A. fcc > bcc > pc
B. bcc > fcc > pc
C. pc > bcc > fcc
D. bcc > pc > fcc
Answer
597.6k+ views
Hint: We know that each cube has 8 corners, 12 edges, 6 faces, 12 face diagonals and 8 body diagonals. Keeping this information in mind we need to proceed for the comparison.
Step by step answer:
The percentage efficiency of a simple cubic unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \text{2r} \right)}^{\text{3}}}\text{= 8}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 8 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{8}}\text{ = 1}\]
Volume of the atom \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]\[\text{= }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
\[\therefore \]packing fraction \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{= }\dfrac{\left( \text{4/3} \right)\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{8}{{\text{r}}^{\text{3}}}}\text{= 0}\text{.5233}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 0}\text{.5233 }\!\!\times\!\!\text{ 100 = 52}\text{.33 }\!\!%\!\!\text{ }\]
The percentage efficiency of a body-centred unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a = }\dfrac{\text{4}}{\sqrt{\text{3}}}\text{ }\!\!\times\!\!\text{ r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \dfrac{\text{4}}{\sqrt{\text{3}}} \right)}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{= }\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}\text{ }{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 2}\]
Volume of two atoms \[\text{= 2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
Therefore, packing fraction (3D) \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{=}\dfrac{\text{2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.68}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 68 }\!\!%\!\!\text{ }\]
The percentage efficiency of a face-centred cubic unit cell:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a=2}\sqrt{\text{2}}\times \text{r}\]
Total volume of the unit cell \[\text{=}{{\text{a}}^{\text{3}}}\text{=(2}\sqrt{\text{2}}{{\text{)}}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{=16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 4}\]
Volume of four atoms \[\text{= 4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
(This is the occupied volume)
Therefore, packing fraction (3D) \[\text{=}\dfrac{\text{Occupied volume }}{\text{ Total volume}}\]
\[\text{=}\dfrac{\text{4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.7401}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 74}\text{.01 }\!\!%\!\!\text{ }\]
Hence we can see that the packing efficiency goes in to order:
fcc > bcc > pc
So Option A is the correct answer.
Note:
Atomic radius of simple cubic unit cell is: \[\text{r = }\dfrac{\text{a}}{\text{2}}\]
Atomic radius of body-centred unit cell is: \[\text{r = }\dfrac{\sqrt{\text{3}}}{\text{4 a}}\]
Atomic radius of face-centred unit cell is: \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]
Step by step answer:
The percentage efficiency of a simple cubic unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \text{2r} \right)}^{\text{3}}}\text{= 8}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 8 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{8}}\text{ = 1}\]
Volume of the atom \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]\[\text{= }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
\[\therefore \]packing fraction \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{= }\dfrac{\left( \text{4/3} \right)\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{8}{{\text{r}}^{\text{3}}}}\text{= 0}\text{.5233}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 0}\text{.5233 }\!\!\times\!\!\text{ 100 = 52}\text{.33 }\!\!%\!\!\text{ }\]
The percentage efficiency of a body-centred unit cell is:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a = }\dfrac{\text{4}}{\sqrt{\text{3}}}\text{ }\!\!\times\!\!\text{ r}\]
Total volume of the unit cell \[\text{= }{{\text{a}}^{\text{3}}}\text{= }{{\left( \dfrac{\text{4}}{\sqrt{\text{3}}} \right)}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{= }\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}\text{ }{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 2}\]
Volume of two atoms \[\text{= 2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
Therefore, packing fraction (3D) \[\text{= }\dfrac{\text{Occupied volume }}{\text{Total volume}}\text{ }\]
\[\text{=}\dfrac{\text{2 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\dfrac{\text{64}}{\text{3}\sqrt{\text{3}}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.68}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 68 }\!\!%\!\!\text{ }\]
The percentage efficiency of a face-centred cubic unit cell:
Suppose,
Length of the unit cell \[\text{= a}\]
Radius of the sphere (atom) \[\text{= r}\]
In this unit cell,
\[\text{a=2}\sqrt{\text{2}}\times \text{r}\]
Total volume of the unit cell \[\text{=}{{\text{a}}^{\text{3}}}\text{=(2}\sqrt{\text{2}}{{\text{)}}^{\text{3}}}{{\text{r}}^{\text{3}}}\text{=16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}\]
Number of atoms per unit cell \[\text{= 4}\]
Volume of four atoms \[\text{= 4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}\]
(This is the occupied volume)
Therefore, packing fraction (3D) \[\text{=}\dfrac{\text{Occupied volume }}{\text{ Total volume}}\]
\[\text{=}\dfrac{\text{4 }\!\!\times\!\!\text{ }\dfrac{\text{4}}{\text{3}}\text{ }\!\!\pi\!\!\text{ }{{\text{r}}^{\text{3}}}}{\text{16}\sqrt{\text{2}}{{\text{r}}^{\text{3}}}}\text{=0}\text{.7401}\]
Thus, the percentage of occupied volume or packing efficiency \[\text{= 74}\text{.01 }\!\!%\!\!\text{ }\]
Hence we can see that the packing efficiency goes in to order:
fcc > bcc > pc
So Option A is the correct answer.
Note:
Atomic radius of simple cubic unit cell is: \[\text{r = }\dfrac{\text{a}}{\text{2}}\]
Atomic radius of body-centred unit cell is: \[\text{r = }\dfrac{\sqrt{\text{3}}}{\text{4 a}}\]
Atomic radius of face-centred unit cell is: \[\text{r = }\dfrac{\text{1}}{\text{2}\sqrt{\text{2}}\text{a}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

