Answer
Verified
493.5k+ views
Hint: In this question first assume any variable for the number of winners and assume another variable for the rest of the candidates, then the sum of these variables are the total number of participants, use this concept to reach the solution of the question.
Let the number of winners be x.
And the rest of the candidates be y.
Now it is given that the total participants is 63.
$ \Rightarrow x + y = 63.................\left( 1 \right)$
Now according to the question winners get a prize of Rs. 100.
And the rest of the candidates get a prize of Rs. 25.
Total prize money is Rs. 3000
Now, convert this information into linear equation we have,
$ \Rightarrow 100x + 25y = 3000$
Now, divide by 25 in above equation we have,
$ \Rightarrow 4x + y = 120...............\left( 2 \right)$
From equation (1)
$y = 63 - x$
Substitute this value in equation (2) we have,
$
\Rightarrow 4x + 63 - x = 120 \\
\Rightarrow 3x = 120 - 63 = 57 \\
\Rightarrow x = \dfrac{{57}}{3} = 19 \\
$
So, the total number of winners in an essay competition is 19.
Note: Whenever we face such types of questions first assume the variables for winners and rest of the participants as above then convert the given information into linear equations as above then solve these two equation using substitution method as above or we can use elimination method by directly subtracting equation (1) from equation (2), we will get the required number of winners in an essay competition.
Let the number of winners be x.
And the rest of the candidates be y.
Now it is given that the total participants is 63.
$ \Rightarrow x + y = 63.................\left( 1 \right)$
Now according to the question winners get a prize of Rs. 100.
And the rest of the candidates get a prize of Rs. 25.
Total prize money is Rs. 3000
Now, convert this information into linear equation we have,
$ \Rightarrow 100x + 25y = 3000$
Now, divide by 25 in above equation we have,
$ \Rightarrow 4x + y = 120...............\left( 2 \right)$
From equation (1)
$y = 63 - x$
Substitute this value in equation (2) we have,
$
\Rightarrow 4x + 63 - x = 120 \\
\Rightarrow 3x = 120 - 63 = 57 \\
\Rightarrow x = \dfrac{{57}}{3} = 19 \\
$
So, the total number of winners in an essay competition is 19.
Note: Whenever we face such types of questions first assume the variables for winners and rest of the participants as above then convert the given information into linear equations as above then solve these two equation using substitution method as above or we can use elimination method by directly subtracting equation (1) from equation (2), we will get the required number of winners in an essay competition.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE