
The of the series $1+\dfrac{1.3}{6}+\dfrac{1.3.5}{6.8}+............\infty $
$\begin{align}
& \left( a \right)1 \\
& \left( b \right)0 \\
& \left( c \right)\infty \\
& \left( d \right)4 \\
\end{align}$
Answer
540.9k+ views
Hint: To solve the question above, we will multiply and divide the series with that number so that when the terms are added, we would be able to cancel these terms. After doing this, we will find the general form of the above series and calculate the sum by the
formula: \[{{S}_{n}}=\in {{T}_{n}}\]
Where ${{S}_{n}}$ is the sum of n form and ${{T}_{n}}$ is the general form of the series.
Complete step-by-step answer:
Before solving the question, we will multiply and divide the whole series with 8. Thus we will get the following series: $\Rightarrow S=\dfrac{8}{8}\left[ 1+\dfrac{1.3}{6}+\dfrac{1.3.5}{6.8}+..........\infty \right]$
$\Rightarrow S=8\left[ \dfrac{1}{8}+\dfrac{1.3}{6.8}+\dfrac{1.3.5}{6.8.8}+.............\infty \right]$
$\Rightarrow S=8\left[ \dfrac{1}{2.4}+\dfrac{1.3}{2.4.6}+\dfrac{1.3.5}{2.4.6.8}+...........\infty \right]$
Thus, the general terms of the above series can be represented by ${{T}_{n}}$ and it will be
given by: ${{T}_{n}}=\dfrac{1.3.5.7............\left( 2n-1 \right)}{2.4.6.8...........\left( 2n+2 \right)}$
Now, we can see that the number of terms which are in multiplication is numerator n and in denominator these terms are (n+1). To get (n+1) terms in numerator we will do
following realation: ${{T}_{n}}=\dfrac{1.3.5.7..........\left( 2n-1 \right)}{2.4.6.8..........\left( 2n+2 \right)}\left[ \left( 2n+2 \right)-\left( 2n+1 \right) \right]$
Now, we have to calculate the sum of all the terms in the series. Now, we know that if ${{S}_{n}}$ is the sum of all the terms till the${{n}^{th}}$ term and ${{T}_{n}}$ is the ${{n}^{th}}$form, then
we will have the following relation: ${{S}_{n}}=\in _{n=1}^{n}{{T}_{n}}$
Now, we have to calculate the sum till the form reaches the $\infty $ i.e. the number of terms are$\infty $. Thus we will get: ${{S}_{n}}=\in _{n=1}^{\infty }{{T}_{n}}$
\[\Rightarrow {{S}_{\infty }}=8\left( {{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+..........{{T}_{\infty }} \right)\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1\left[ 4-3 \right]}{2.4} \right)+\left( \dfrac{1.3\left[ 6-5 \right]}{2.4.6} \right)+\left( \dfrac{1.3.5\left[ 8-7 \right]}{2.4.6.8} \right)+ \\
& {{\lim }_{n\to \infty }}\dfrac{1.3.5.7........\left( 2n-1 \right)}{2.4.6.8.........\left( 2n+2 \right)}\left[ \left( 2n+2 \right)-\left( 2n-1 \right) \right] \\
\end{align} \right]\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1.4}{2.4}-\dfrac{1.3}{2.4} \right)+\left( \dfrac{1.3.6}{2.4.6}-\dfrac{1.3.5}{2.4.6} \right)+\left( \dfrac{1.3.5.8}{2.4.6.8}-\dfrac{1.3.5.7}{2.4.6.8} \right)+ \\
& {{\lim }_{\to \infty }}\left[ \dfrac{1.3.5.7.........\left( 2n-1 \right)\left( 2n+2 \right)}{2.4.6..............\left( 2n+2 \right)}-\dfrac{1.3.5..............\left( 2n-1 \right)\left( 2n+1 \right)}{2.4.6.8.............\left( 2n \right)} \right] \\
\end{align} \right]\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1.4}{2.4}-\dfrac{1.3}{2.4} \right)+\left( \dfrac{1.3}{2.4}-\dfrac{1.3.5}{2.4.6} \right)+\left( \dfrac{1.3.5}{2.4.6}-\dfrac{1.3.5.7}{2.4.6.8} \right)+ \\
& {{\lim }_{\to \infty }}\left[ \dfrac{1.3.5.........\left( 2n-1 \right)}{2.4.6..............\left( 2n \right)}-\dfrac{1.3.5.9..........\left( 2n+1 \right)}{2.4.6.............\left( 2n+2 \right)} \right] \\
\end{align} \right]\]
Here, we can see that the forms are cancelling. The second and third are equal but opposite in sign. Similarly the fourth and fifth terms are equal but opposite is sign. Thus, all the terms will cancel but similarly except the first form and the last term. Thus, we will get:
$\begin{align}
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}.\dfrac{4}{4}-{{\lim }_{n\to \infty }}\left[ \dfrac{1.3.5.7.9........\left( 2n+1 \right)}{2.4.6.8...........\left( 2n+2 \right)} \right] \right] \\
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}-{{\lim }_{n\to \infty }}{{T}_{n+1}} \right] \\
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}-0 \right] \\
& \Rightarrow {{S}_{\infty }}=8\times \dfrac{1}{2} \\
& \Rightarrow {{S}_{\infty }}=4 \\
\end{align}$
Hence, option (d) is correct.
Note: We have been able to calculate the above sum of series because the series given in the equation is a convergent series i.e. the ratio of the \[{{\left( n+1 \right)}^{th}}\] term to the ${{n}^{th}}$ term is less than 1. If the ratio had been greater than 1, then we would not be able to calculate the series.
formula: \[{{S}_{n}}=\in {{T}_{n}}\]
Where ${{S}_{n}}$ is the sum of n form and ${{T}_{n}}$ is the general form of the series.
Complete step-by-step answer:
Before solving the question, we will multiply and divide the whole series with 8. Thus we will get the following series: $\Rightarrow S=\dfrac{8}{8}\left[ 1+\dfrac{1.3}{6}+\dfrac{1.3.5}{6.8}+..........\infty \right]$
$\Rightarrow S=8\left[ \dfrac{1}{8}+\dfrac{1.3}{6.8}+\dfrac{1.3.5}{6.8.8}+.............\infty \right]$
$\Rightarrow S=8\left[ \dfrac{1}{2.4}+\dfrac{1.3}{2.4.6}+\dfrac{1.3.5}{2.4.6.8}+...........\infty \right]$
Thus, the general terms of the above series can be represented by ${{T}_{n}}$ and it will be
given by: ${{T}_{n}}=\dfrac{1.3.5.7............\left( 2n-1 \right)}{2.4.6.8...........\left( 2n+2 \right)}$
Now, we can see that the number of terms which are in multiplication is numerator n and in denominator these terms are (n+1). To get (n+1) terms in numerator we will do
following realation: ${{T}_{n}}=\dfrac{1.3.5.7..........\left( 2n-1 \right)}{2.4.6.8..........\left( 2n+2 \right)}\left[ \left( 2n+2 \right)-\left( 2n+1 \right) \right]$
Now, we have to calculate the sum of all the terms in the series. Now, we know that if ${{S}_{n}}$ is the sum of all the terms till the${{n}^{th}}$ term and ${{T}_{n}}$ is the ${{n}^{th}}$form, then
we will have the following relation: ${{S}_{n}}=\in _{n=1}^{n}{{T}_{n}}$
Now, we have to calculate the sum till the form reaches the $\infty $ i.e. the number of terms are$\infty $. Thus we will get: ${{S}_{n}}=\in _{n=1}^{\infty }{{T}_{n}}$
\[\Rightarrow {{S}_{\infty }}=8\left( {{T}_{1}}+{{T}_{2}}+{{T}_{3}}+{{T}_{4}}+..........{{T}_{\infty }} \right)\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1\left[ 4-3 \right]}{2.4} \right)+\left( \dfrac{1.3\left[ 6-5 \right]}{2.4.6} \right)+\left( \dfrac{1.3.5\left[ 8-7 \right]}{2.4.6.8} \right)+ \\
& {{\lim }_{n\to \infty }}\dfrac{1.3.5.7........\left( 2n-1 \right)}{2.4.6.8.........\left( 2n+2 \right)}\left[ \left( 2n+2 \right)-\left( 2n-1 \right) \right] \\
\end{align} \right]\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1.4}{2.4}-\dfrac{1.3}{2.4} \right)+\left( \dfrac{1.3.6}{2.4.6}-\dfrac{1.3.5}{2.4.6} \right)+\left( \dfrac{1.3.5.8}{2.4.6.8}-\dfrac{1.3.5.7}{2.4.6.8} \right)+ \\
& {{\lim }_{\to \infty }}\left[ \dfrac{1.3.5.7.........\left( 2n-1 \right)\left( 2n+2 \right)}{2.4.6..............\left( 2n+2 \right)}-\dfrac{1.3.5..............\left( 2n-1 \right)\left( 2n+1 \right)}{2.4.6.8.............\left( 2n \right)} \right] \\
\end{align} \right]\]
\[\Rightarrow {{S}_{\infty }}=8\left[ \begin{align}
& \left( \dfrac{1.4}{2.4}-\dfrac{1.3}{2.4} \right)+\left( \dfrac{1.3}{2.4}-\dfrac{1.3.5}{2.4.6} \right)+\left( \dfrac{1.3.5}{2.4.6}-\dfrac{1.3.5.7}{2.4.6.8} \right)+ \\
& {{\lim }_{\to \infty }}\left[ \dfrac{1.3.5.........\left( 2n-1 \right)}{2.4.6..............\left( 2n \right)}-\dfrac{1.3.5.9..........\left( 2n+1 \right)}{2.4.6.............\left( 2n+2 \right)} \right] \\
\end{align} \right]\]
Here, we can see that the forms are cancelling. The second and third are equal but opposite in sign. Similarly the fourth and fifth terms are equal but opposite is sign. Thus, all the terms will cancel but similarly except the first form and the last term. Thus, we will get:
$\begin{align}
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}.\dfrac{4}{4}-{{\lim }_{n\to \infty }}\left[ \dfrac{1.3.5.7.9........\left( 2n+1 \right)}{2.4.6.8...........\left( 2n+2 \right)} \right] \right] \\
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}-{{\lim }_{n\to \infty }}{{T}_{n+1}} \right] \\
& \Rightarrow {{S}_{\infty }}=8\left[ \dfrac{1}{2}-0 \right] \\
& \Rightarrow {{S}_{\infty }}=8\times \dfrac{1}{2} \\
& \Rightarrow {{S}_{\infty }}=4 \\
\end{align}$
Hence, option (d) is correct.
Note: We have been able to calculate the above sum of series because the series given in the equation is a convergent series i.e. the ratio of the \[{{\left( n+1 \right)}^{th}}\] term to the ${{n}^{th}}$ term is less than 1. If the ratio had been greater than 1, then we would not be able to calculate the series.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
