
The numerical value of planck’s constant is __________ .
A: $ 6.6 \times {10^{ - 19}}{\text{Jsec}} $
B: $ 6.6 \times {10^{ - 34}}{\text{Jsec}} $
C: $ 6.6 \times {10^{ - 25}}{\text{Jsec}} $
D: $ 6.6 \times {10^{ - 50}}{\text{Jsec}} $
Answer
534k+ views
Hint: In quantum physics , the energy of electromagnetic radiation is restricted to indivisible packets called photons . Every photon has an energy $ {E_f} $ , $ f $ being the frequency of the radiation , and $ h $ a universal constant recognized by Max Planck.
Planck's constant as the name goes was first introduced by my great physicist Max Planck in order to explain blackbody radiation which was a great mystery those days.
Planck hypothesized that energy emitted by a blackbody is always in the integer multiple of quanta of energy. Planck hypothesized this just to match black body radiation spectrum.
Einstein used this hypothesis to explain the photoelectric effect.
$ \
{\text{As einstein thesis,}} \\
{{E = m}}{{\text{c}}^2} \\
{\text{However when we are dealing with the photons of light}} \\
{{E}} \propto {\text{c}} \\
{{E}} \propto \dfrac{1}{\lambda } \\
{{E = h}}\dfrac{c}{\lambda } \\
{\text{here,}} \\
{\text{h = Planck's constant}} \\
{\text{c = speed of light}} \\
\lambda = {\text{Wavelength of light}} \\
{\text{h = 6}}{\text{.636}} \times {\text{1}}{{\text{0}}^{ - 34}}{\text{J sec}} \\
\ $
Correct Option is B.
Additional Information:
The physics of classical many-particle systems then is a very convenient space to use when describing such systems where you have an axis for every direction of ordinary 3d space for each particle but also an axis for every direction of momentum of each particle. It is described with systems with very many particles by following the evolution of the density of particles in this larger space. This larger space is called phase space and a well-known result from classical mechanics is that the classical equations of motion conserve the density in this space. So little volume-elements containing those particles in phase-space may change their shape and form, but they won’t change their size. The units of that phase-space volume are (Joules x second) to the power of $ {3^n} $ if you have n particles. So it is interpreted that the Planck’s constant to the power $ {3^n} $ as a fundamental unit of phase-space volume. It tells you something about the fundamental ‘graininess’ of nature. Planck’s constant itself does not explain this graininess, but quantum mechanics does and quantum mechanics relies heavily on Planck’s constant.
Note:
Energy, mass, momentum, time, distance, can all be defined in terms of a minimum measurable value. In these definitions, Planck’s constant puts a limit on how much you can know about the state of a particle.
Planck's constant as the name goes was first introduced by my great physicist Max Planck in order to explain blackbody radiation which was a great mystery those days.
Planck hypothesized that energy emitted by a blackbody is always in the integer multiple of quanta of energy. Planck hypothesized this just to match black body radiation spectrum.
Einstein used this hypothesis to explain the photoelectric effect.
$ \
{\text{As einstein thesis,}} \\
{{E = m}}{{\text{c}}^2} \\
{\text{However when we are dealing with the photons of light}} \\
{{E}} \propto {\text{c}} \\
{{E}} \propto \dfrac{1}{\lambda } \\
{{E = h}}\dfrac{c}{\lambda } \\
{\text{here,}} \\
{\text{h = Planck's constant}} \\
{\text{c = speed of light}} \\
\lambda = {\text{Wavelength of light}} \\
{\text{h = 6}}{\text{.636}} \times {\text{1}}{{\text{0}}^{ - 34}}{\text{J sec}} \\
\ $
Correct Option is B.
Additional Information:
The physics of classical many-particle systems then is a very convenient space to use when describing such systems where you have an axis for every direction of ordinary 3d space for each particle but also an axis for every direction of momentum of each particle. It is described with systems with very many particles by following the evolution of the density of particles in this larger space. This larger space is called phase space and a well-known result from classical mechanics is that the classical equations of motion conserve the density in this space. So little volume-elements containing those particles in phase-space may change their shape and form, but they won’t change their size. The units of that phase-space volume are (Joules x second) to the power of $ {3^n} $ if you have n particles. So it is interpreted that the Planck’s constant to the power $ {3^n} $ as a fundamental unit of phase-space volume. It tells you something about the fundamental ‘graininess’ of nature. Planck’s constant itself does not explain this graininess, but quantum mechanics does and quantum mechanics relies heavily on Planck’s constant.
Note:
Energy, mass, momentum, time, distance, can all be defined in terms of a minimum measurable value. In these definitions, Planck’s constant puts a limit on how much you can know about the state of a particle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

