
The numerator of a fraction is $3$ less than its denominator. If $2$ is added to both the numerator and denominator, then the sum of the new fraction and the original fraction is $\dfrac{29}{20}$. Find the original fraction.
Answer
601.2k+ views
Hint:Assume either the numerator or denominator to be an unknown quantity. Then, use the condition given to solve for the unknown quantity, and thus form the original fraction.
Complete step-by-step answer:
Let us assume the denominator of the original fraction to be x. Now, the numerator is said to be 3 less than the denominator. Thus, the numerator is (x – 3).
Then, the original fraction is of the expression $\dfrac{\text{x - 3}}{\text{x}}$.
Now, by adding 2 to each of the numerator and denominator of the original fraction, we get,
The new fraction $=\text{ }\dfrac{\text{x - 1}}{\text{x + 2}}$
According to the condition i.e the sum of the new fraction and the original fraction is $\dfrac{29}{20}$ given in the question, the equation can be expressed as follows:
\[\begin{align}
& \dfrac{\text{x }-\text{ 3}}{\text{x}}\text{ + }\dfrac{\text{x }-\text{ 1}}{\text{x }+\text{ 2}}\text{ = }\dfrac{29}{20} \\
& \Rightarrow \text{ 1 }-\text{ }\dfrac{3}{\text{x}}\text{ }+\text{ }\dfrac{\text{x }-\text{ 1}}{\text{x + 2}}\text{ = }\dfrac{29}{20} \\
& \Rightarrow \text{ }\dfrac{\text{x }-\text{ 1}}{\text{x + 2}}\text{ }-\text{ }\dfrac{3}{\text{x}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ }\dfrac{\text{x(x }-\text{ 1) }-\text{ 3(x + 2)}}{\text{x(x + 2)}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ }\dfrac{{{\text{x}}^{2}}\text{ }-\text{ x }-\text{ 3x }-\text{ 6}}{{{\text{x}}^{2}}\text{ + 2x}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ 20(}{{\text{x}}^{\text{2}}}\text{ - 4x - 6) = 9(}{{\text{x}}^{\text{2}}}\text{ + 2x)} \\
\end{align}\]
\[\begin{align}
& \Rightarrow \text{ 20}{{\text{x}}^{2}}\text{ - 80x - 120 = 9}{{\text{x}}^{2}}\text{ + 18x} \\
& \Rightarrow \text{ 11}{{\text{x}}^{2}}\text{ - 98x - 120 = 0} \\
& \Rightarrow \text{ 11}{{\text{x}}^{2}}\text{ - 110x + 12x - 120 = 0} \\
& \Rightarrow \text{ 11x(x - 10) + 12(x - 10) = 0} \\
& \Rightarrow \text{ (x - 10)(11x + 12) = 0} \\
\end{align}\]
Either $\text{x = 10}$ or $\text{x }=\text{ }-\frac{12}{11}$
Thus, the solutions of the original fraction are given as:
i) $\dfrac{10\text{ - 3}}{10}\text{ = }\dfrac{7}{10}$
ii) $\dfrac{-\dfrac{12}{11}\text{ }-\text{ 3}}{-\dfrac{12}{11}}\text{ = }\dfrac{\dfrac{-12\text{ }-\text{ 33}}{11}}{-\dfrac{12}{11}}$
$\begin{align}
& \text{ }=\text{ }\dfrac{\text{ }-\dfrac{45}{11}}{-\dfrac{12}{11}} \\
& \text{ }=\text{ }\dfrac{15}{4} \\
\end{align}$
Since, in the solution $\dfrac{15}{4}$, the condition given in the question that the numerator is 3 less than the denominator, is not satisfied, this solution is discarded. So, only the solution $\dfrac{7}{10}$ is accepted.
Thus, the answer is$\dfrac{7}{10}$.
Note: Of the two solutions for the original fraction, the solution$\dfrac{7}{10}$, both the conditions given in the question are satisfied. But, the solution $\dfrac{15}{4}$ satisfies neither of the given conditions. It is obtained by reducing the fraction $\dfrac{-\dfrac{45}{11}}{-\dfrac{12}{11}}$ into its lowest terms, the original solution $\dfrac{-\dfrac{45}{11}}{-\dfrac{12}{11}}$ satisfies both the conditions.
Complete step-by-step answer:
Let us assume the denominator of the original fraction to be x. Now, the numerator is said to be 3 less than the denominator. Thus, the numerator is (x – 3).
Then, the original fraction is of the expression $\dfrac{\text{x - 3}}{\text{x}}$.
Now, by adding 2 to each of the numerator and denominator of the original fraction, we get,
The new fraction $=\text{ }\dfrac{\text{x - 1}}{\text{x + 2}}$
According to the condition i.e the sum of the new fraction and the original fraction is $\dfrac{29}{20}$ given in the question, the equation can be expressed as follows:
\[\begin{align}
& \dfrac{\text{x }-\text{ 3}}{\text{x}}\text{ + }\dfrac{\text{x }-\text{ 1}}{\text{x }+\text{ 2}}\text{ = }\dfrac{29}{20} \\
& \Rightarrow \text{ 1 }-\text{ }\dfrac{3}{\text{x}}\text{ }+\text{ }\dfrac{\text{x }-\text{ 1}}{\text{x + 2}}\text{ = }\dfrac{29}{20} \\
& \Rightarrow \text{ }\dfrac{\text{x }-\text{ 1}}{\text{x + 2}}\text{ }-\text{ }\dfrac{3}{\text{x}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ }\dfrac{\text{x(x }-\text{ 1) }-\text{ 3(x + 2)}}{\text{x(x + 2)}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ }\dfrac{{{\text{x}}^{2}}\text{ }-\text{ x }-\text{ 3x }-\text{ 6}}{{{\text{x}}^{2}}\text{ + 2x}}\text{ = }\dfrac{9}{20} \\
& \Rightarrow \text{ 20(}{{\text{x}}^{\text{2}}}\text{ - 4x - 6) = 9(}{{\text{x}}^{\text{2}}}\text{ + 2x)} \\
\end{align}\]
\[\begin{align}
& \Rightarrow \text{ 20}{{\text{x}}^{2}}\text{ - 80x - 120 = 9}{{\text{x}}^{2}}\text{ + 18x} \\
& \Rightarrow \text{ 11}{{\text{x}}^{2}}\text{ - 98x - 120 = 0} \\
& \Rightarrow \text{ 11}{{\text{x}}^{2}}\text{ - 110x + 12x - 120 = 0} \\
& \Rightarrow \text{ 11x(x - 10) + 12(x - 10) = 0} \\
& \Rightarrow \text{ (x - 10)(11x + 12) = 0} \\
\end{align}\]
Either $\text{x = 10}$ or $\text{x }=\text{ }-\frac{12}{11}$
Thus, the solutions of the original fraction are given as:
i) $\dfrac{10\text{ - 3}}{10}\text{ = }\dfrac{7}{10}$
ii) $\dfrac{-\dfrac{12}{11}\text{ }-\text{ 3}}{-\dfrac{12}{11}}\text{ = }\dfrac{\dfrac{-12\text{ }-\text{ 33}}{11}}{-\dfrac{12}{11}}$
$\begin{align}
& \text{ }=\text{ }\dfrac{\text{ }-\dfrac{45}{11}}{-\dfrac{12}{11}} \\
& \text{ }=\text{ }\dfrac{15}{4} \\
\end{align}$
Since, in the solution $\dfrac{15}{4}$, the condition given in the question that the numerator is 3 less than the denominator, is not satisfied, this solution is discarded. So, only the solution $\dfrac{7}{10}$ is accepted.
Thus, the answer is$\dfrac{7}{10}$.
Note: Of the two solutions for the original fraction, the solution$\dfrac{7}{10}$, both the conditions given in the question are satisfied. But, the solution $\dfrac{15}{4}$ satisfies neither of the given conditions. It is obtained by reducing the fraction $\dfrac{-\dfrac{45}{11}}{-\dfrac{12}{11}}$ into its lowest terms, the original solution $\dfrac{-\dfrac{45}{11}}{-\dfrac{12}{11}}$ satisfies both the conditions.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

