
The number of ways that 12 prizes can be divided among 4 students so that each may have 3 prizes is:
A.15,400
B.15,300
C.15,151
D.369,600
Answer
583.2k+ views
Hint: We will use the method of combinations to calculate the number of ways such that 12 prizes can be divided among 4 students so that each may have 3 prizes and in the last, we will multiply all the possible conditions to calculate the final number of ways because all of the ways altogether forms the total ways not individually.
Complete step-by-step answer:
We are given that 12 prizes need to be distributed among 4 students so that each can have 3 prizes.
Therefore, each will get 3 prizes and there will be no remaining prize. Then, 12 prizes can be distributed among 4 students as:
The 1st student will get 3 prizes from a total of 12 prizes. Therefore, total ways in which this can be distributed are ${}^{12}{C_3}$.
Now, there are 9 remaining prizes from a total of 12 prizes for the remaining 3 students.
For 2nd students, he will receive 3 prizes from a total of 9 prizes. The total ways in which it can be done are ${}^9{C_3}$.
Now, there are 6 remaining prizes from a total of 12 prizes for the remaining 2 students.
3rd students will receive 3 prizes from the remaining 6 prizes. The total number of ways to do so are ${}^6{C_3}$
There will be only 3 prizes left and they will be given to 4th students in ${}^3{C_3}$ways.
We know that all these prizes will be distributed to the students simultaneously, hence, they will be multiplied with each other to get the total number of ways.
$ \Rightarrow $total number of ways = ${}^{12}{C_3} \times {}^9{C_3} \times {}^6{C_3} \times {}^3{C_3}$
$ \Rightarrow {}^{12}{C_3} \times {}^9{C_3} \times {}^6{C_3} \times {}^3{C_3} = 220 \times 84 \times 20 \times 1 = 369,600$
Therefore, the total number of ways to distribute 12 prizes among 4 students equally is 369,600.
Hence, option(D) is correct.
Note: In such problems, students might get confused between what to use i.e., either permutations or combinations. Also, you need to take care of multiplication or addition to get the final answer.
Complete step-by-step answer:
We are given that 12 prizes need to be distributed among 4 students so that each can have 3 prizes.
Therefore, each will get 3 prizes and there will be no remaining prize. Then, 12 prizes can be distributed among 4 students as:
The 1st student will get 3 prizes from a total of 12 prizes. Therefore, total ways in which this can be distributed are ${}^{12}{C_3}$.
Now, there are 9 remaining prizes from a total of 12 prizes for the remaining 3 students.
For 2nd students, he will receive 3 prizes from a total of 9 prizes. The total ways in which it can be done are ${}^9{C_3}$.
Now, there are 6 remaining prizes from a total of 12 prizes for the remaining 2 students.
3rd students will receive 3 prizes from the remaining 6 prizes. The total number of ways to do so are ${}^6{C_3}$
There will be only 3 prizes left and they will be given to 4th students in ${}^3{C_3}$ways.
We know that all these prizes will be distributed to the students simultaneously, hence, they will be multiplied with each other to get the total number of ways.
$ \Rightarrow $total number of ways = ${}^{12}{C_3} \times {}^9{C_3} \times {}^6{C_3} \times {}^3{C_3}$
$ \Rightarrow {}^{12}{C_3} \times {}^9{C_3} \times {}^6{C_3} \times {}^3{C_3} = 220 \times 84 \times 20 \times 1 = 369,600$
Therefore, the total number of ways to distribute 12 prizes among 4 students equally is 369,600.
Hence, option(D) is correct.
Note: In such problems, students might get confused between what to use i.e., either permutations or combinations. Also, you need to take care of multiplication or addition to get the final answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

