
The number of values of k for which the system of linear equations, \[\left( {2k + 1} \right)x + 5ky = k + 2\] and $kx + \left( {k + 2} \right)y = 2$ has no solution, is:
(1) Infinitely many
(2) $3$
(3) $1$
(4) $2$
Answer
556.5k+ views
Hint: A non-homogeneous system of linear equations has a unique solution if its determinant is non-zero. If the determinant is zero, then the system has either no solution. So, for the system to have no solution, the determinant of the system of linear equations must be zero.
Complete step-by-step answer:
Given, system of linear equations:
\[\left( {2k + 1} \right)x + 5ky = k + 2\]
$kx + \left( {k + 2} \right)y = 2$
Above system of linear equation can be written in the form of $AX = B$,
$\left[ {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{k + 2} \\
2
\end{array}} \right]$
Where $A = \left[ {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{k + 2} \\
2
\end{array}} \right]$
Now, for the system have no solution, determinant of $A$ must be zero.
$\therefore \left| A \right| = 0$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right| = 0$
$ \Rightarrow \left( {2k + 1} \right)\left( {k + 2} \right) - 5k \cdot k = 0$
$ \Rightarrow 2{k^2} + 4k + k + 2 - 5{k^2} = 0$
$ \Rightarrow - 3{k^2} + 5k + 2 = 0$
$ \Rightarrow 3{k^2} - 5k - 2 = 0$
$ \Rightarrow 3{k^2} - \left( {6 - 1} \right)k - 2 = 0$
$ \Rightarrow 3{k^2} - 6k + k - 2 = 0$
$ \Rightarrow 3k\left( {k - 2} \right) + 1\left( {k - 2} \right) = 0$
$ \Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) = 0$
$ \Rightarrow k = \dfrac{{ - 1}}{3}$ or $k = 2$
So, $k$ have $2$ values for which the given system of linear equations has no solution.
Hence, option (4) is the correct answer.
Note: An another method to solve this question is described as follows:
A system of linear equations ${a_1}x + {b_1}y = {c_1}\& {a_2}x + {b_2}y = {c_2}$ has no solution if,
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$
Given, system of linear equations:
\[\left( {2k + 1} \right)x + 5ky = k + 2\]
$kx + \left( {k + 2} \right)y = 2$
For no solution:
$\dfrac{{2k + 1}}{k} = \dfrac{{5k}}{{k + 2}} \ne \dfrac{{k + 2}}{2}$
$ \Rightarrow \dfrac{{2k + 1}}{k} = \dfrac{{5k}}{{k + 2}}$
$ \Rightarrow \left( {2k + 1} \right)\left( {k + 2} \right) = 5k \cdot k$
$ \Rightarrow 2{k^2} + 4k + k + 2 = 5{k^2}$
$ \Rightarrow 2{k^2} + 4k + k + 2 = 5{k^2}$
$ \Rightarrow - 3{k^2} + 5k + 2 = 0$
$ \Rightarrow 3{k^2} - 5k - 2 = 0$
$ \Rightarrow 3{k^2} - \left( {6 - 1} \right)k - 2 = 0$
$ \Rightarrow 3{k^2} - 6k + k - 2 = 0$
$ \Rightarrow 3k\left( {k - 2} \right) + 1\left( {k - 2} \right) = 0$
$ \Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) = 0$
$ \Rightarrow k = \dfrac{{ - 1}}{3}$ or $k = 2$
So, $k$ have $2$ values for which the given system of linear equations has no solution.
Hence, option (4) is the correct answer.
Complete step-by-step answer:
Given, system of linear equations:
\[\left( {2k + 1} \right)x + 5ky = k + 2\]
$kx + \left( {k + 2} \right)y = 2$
Above system of linear equation can be written in the form of $AX = B$,
$\left[ {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{k + 2} \\
2
\end{array}} \right]$
Where $A = \left[ {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right],X = \left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{k + 2} \\
2
\end{array}} \right]$
Now, for the system have no solution, determinant of $A$ must be zero.
$\therefore \left| A \right| = 0$
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{2k + 1}&{5k} \\
k&{k + 2}
\end{array}} \right| = 0$
$ \Rightarrow \left( {2k + 1} \right)\left( {k + 2} \right) - 5k \cdot k = 0$
$ \Rightarrow 2{k^2} + 4k + k + 2 - 5{k^2} = 0$
$ \Rightarrow - 3{k^2} + 5k + 2 = 0$
$ \Rightarrow 3{k^2} - 5k - 2 = 0$
$ \Rightarrow 3{k^2} - \left( {6 - 1} \right)k - 2 = 0$
$ \Rightarrow 3{k^2} - 6k + k - 2 = 0$
$ \Rightarrow 3k\left( {k - 2} \right) + 1\left( {k - 2} \right) = 0$
$ \Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) = 0$
$ \Rightarrow k = \dfrac{{ - 1}}{3}$ or $k = 2$
So, $k$ have $2$ values for which the given system of linear equations has no solution.
Hence, option (4) is the correct answer.
Note: An another method to solve this question is described as follows:
A system of linear equations ${a_1}x + {b_1}y = {c_1}\& {a_2}x + {b_2}y = {c_2}$ has no solution if,
$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}$
Given, system of linear equations:
\[\left( {2k + 1} \right)x + 5ky = k + 2\]
$kx + \left( {k + 2} \right)y = 2$
For no solution:
$\dfrac{{2k + 1}}{k} = \dfrac{{5k}}{{k + 2}} \ne \dfrac{{k + 2}}{2}$
$ \Rightarrow \dfrac{{2k + 1}}{k} = \dfrac{{5k}}{{k + 2}}$
$ \Rightarrow \left( {2k + 1} \right)\left( {k + 2} \right) = 5k \cdot k$
$ \Rightarrow 2{k^2} + 4k + k + 2 = 5{k^2}$
$ \Rightarrow 2{k^2} + 4k + k + 2 = 5{k^2}$
$ \Rightarrow - 3{k^2} + 5k + 2 = 0$
$ \Rightarrow 3{k^2} - 5k - 2 = 0$
$ \Rightarrow 3{k^2} - \left( {6 - 1} \right)k - 2 = 0$
$ \Rightarrow 3{k^2} - 6k + k - 2 = 0$
$ \Rightarrow 3k\left( {k - 2} \right) + 1\left( {k - 2} \right) = 0$
$ \Rightarrow \left( {3k + 1} \right)\left( {k - 2} \right) = 0$
$ \Rightarrow k = \dfrac{{ - 1}}{3}$ or $k = 2$
So, $k$ have $2$ values for which the given system of linear equations has no solution.
Hence, option (4) is the correct answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Which is the main party in the National Democratic class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the median of the first 10 natural numbers class 10 maths CBSE

Write an application to the principal requesting five class 10 english CBSE

