
The number of values of \[\alpha \] in \[\left[ {0,2\pi } \right]\] for which \[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\], is:
A) 6
B) 4
C) 3
D) 1
Answer
512.4k+ views
Hint: Here we will use the identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] and then simplify the resultant term and then find the values of \[\alpha \] accordingly.
Complete step-by-step answer:
The give equation is:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\]
Simplifying it further we get:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha - {\text{2 = 0}}\]
Taking out the terms as common we get:-
\[2\left( {{\text{si}}{{\text{n}}^{\text{3}}}\alpha - 1} \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now applying the following identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \left( 1 \right)\sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now simplifying it further we get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now taking \[\left( {\sin \alpha - 1} \right)\] as common we get:-
Solving it further we get:-
\[
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 + 2\sin \alpha - 7{\text{sin}}\alpha } \right] = 0 \\
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 - 5\sin \alpha } \right] = 0 \\
\]
Now solving the quadratic equation using middle term split we get:-
\[\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha - 4\sin \alpha - \sin \alpha + 2} \right] = 0\]
Solving it further we get:-
\[ \Rightarrow \left( {\sin \alpha - 1} \right)\left( {2\sin \alpha - 1} \right)\left( {\sin \alpha - 2} \right) = 0\]
Now evaluating the value of \[\sin \alpha \]we get:-
\[
\sin \alpha = 1;2\sin \alpha = 1;\sin \alpha = 2 \\
\Rightarrow \sin \alpha = 1;\sin \alpha = \dfrac{1}{2};\sin \alpha = 2 \\
\]
Now since we know that \[ - 1 \leqslant \sin \theta \leqslant 1\]
Therefore, \[\sin \alpha \ne 2\]
Therefore,
\[\sin \alpha = 1;\sin \alpha = \dfrac{1}{2}\]
Since \[\alpha \] is in \[\left[ {0,2\pi } \right]\]
Now we know that,
\[
\sin \dfrac{\pi }{2} = 1 \\
\sin \dfrac{\pi }{6},\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2} \\
\]
Hence values of \[\alpha \] are: - \[\dfrac{\pi }{2},\dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
Hence there are 3 values of \[\alpha \]
Hence option C is the correct option.
Note: Students should note that sine function is positive in 1st and 2nd quadrant.
Also, the identity and the calculations should be correct and accurate.
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] and then simplify the resultant term and then find the values of \[\alpha \] accordingly.
Complete step-by-step answer:
The give equation is:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\]
Simplifying it further we get:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha - {\text{2 = 0}}\]
Taking out the terms as common we get:-
\[2\left( {{\text{si}}{{\text{n}}^{\text{3}}}\alpha - 1} \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now applying the following identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \left( 1 \right)\sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now simplifying it further we get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now taking \[\left( {\sin \alpha - 1} \right)\] as common we get:-
Solving it further we get:-
\[
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 + 2\sin \alpha - 7{\text{sin}}\alpha } \right] = 0 \\
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 - 5\sin \alpha } \right] = 0 \\
\]
Now solving the quadratic equation using middle term split we get:-
\[\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha - 4\sin \alpha - \sin \alpha + 2} \right] = 0\]
Solving it further we get:-
\[ \Rightarrow \left( {\sin \alpha - 1} \right)\left( {2\sin \alpha - 1} \right)\left( {\sin \alpha - 2} \right) = 0\]
Now evaluating the value of \[\sin \alpha \]we get:-
\[
\sin \alpha = 1;2\sin \alpha = 1;\sin \alpha = 2 \\
\Rightarrow \sin \alpha = 1;\sin \alpha = \dfrac{1}{2};\sin \alpha = 2 \\
\]
Now since we know that \[ - 1 \leqslant \sin \theta \leqslant 1\]
Therefore, \[\sin \alpha \ne 2\]
Therefore,
\[\sin \alpha = 1;\sin \alpha = \dfrac{1}{2}\]
Since \[\alpha \] is in \[\left[ {0,2\pi } \right]\]
Now we know that,
\[
\sin \dfrac{\pi }{2} = 1 \\
\sin \dfrac{\pi }{6},\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2} \\
\]
Hence values of \[\alpha \] are: - \[\dfrac{\pi }{2},\dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
Hence there are 3 values of \[\alpha \]
Hence option C is the correct option.
Note: Students should note that sine function is positive in 1st and 2nd quadrant.

Also, the identity and the calculations should be correct and accurate.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
