
The number of values of \[\alpha \] in \[\left[ {0,2\pi } \right]\] for which \[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\], is:
A) 6
B) 4
C) 3
D) 1
Answer
592.2k+ views
Hint: Here we will use the identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] and then simplify the resultant term and then find the values of \[\alpha \] accordingly.
Complete step-by-step answer:
The give equation is:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\]
Simplifying it further we get:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha - {\text{2 = 0}}\]
Taking out the terms as common we get:-
\[2\left( {{\text{si}}{{\text{n}}^{\text{3}}}\alpha - 1} \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now applying the following identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \left( 1 \right)\sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now simplifying it further we get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now taking \[\left( {\sin \alpha - 1} \right)\] as common we get:-
Solving it further we get:-
\[
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 + 2\sin \alpha - 7{\text{sin}}\alpha } \right] = 0 \\
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 - 5\sin \alpha } \right] = 0 \\
\]
Now solving the quadratic equation using middle term split we get:-
\[\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha - 4\sin \alpha - \sin \alpha + 2} \right] = 0\]
Solving it further we get:-
\[ \Rightarrow \left( {\sin \alpha - 1} \right)\left( {2\sin \alpha - 1} \right)\left( {\sin \alpha - 2} \right) = 0\]
Now evaluating the value of \[\sin \alpha \]we get:-
\[
\sin \alpha = 1;2\sin \alpha = 1;\sin \alpha = 2 \\
\Rightarrow \sin \alpha = 1;\sin \alpha = \dfrac{1}{2};\sin \alpha = 2 \\
\]
Now since we know that \[ - 1 \leqslant \sin \theta \leqslant 1\]
Therefore, \[\sin \alpha \ne 2\]
Therefore,
\[\sin \alpha = 1;\sin \alpha = \dfrac{1}{2}\]
Since \[\alpha \] is in \[\left[ {0,2\pi } \right]\]
Now we know that,
\[
\sin \dfrac{\pi }{2} = 1 \\
\sin \dfrac{\pi }{6},\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2} \\
\]
Hence values of \[\alpha \] are: - \[\dfrac{\pi }{2},\dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
Hence there are 3 values of \[\alpha \]
Hence option C is the correct option.
Note: Students should note that sine function is positive in 1st and 2nd quadrant.
Also, the identity and the calculations should be correct and accurate.
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\] and then simplify the resultant term and then find the values of \[\alpha \] accordingly.
Complete step-by-step answer:
The give equation is:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha = {\text{2}}\]
Simplifying it further we get:-
\[{\text{2si}}{{\text{n}}^{\text{3}}}\alpha {\text{ - 7si}}{{\text{n}}^{\text{2}}}\alpha {\text{ + 7sin}}\alpha - {\text{2 = 0}}\]
Taking out the terms as common we get:-
\[2\left( {{\text{si}}{{\text{n}}^{\text{3}}}\alpha - 1} \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now applying the following identity:
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
We get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \left( 1 \right)\sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now simplifying it further we get:-
\[2\left( {\sin \alpha - 1} \right)\left( {{{\sin }^2}\alpha + 1 + \sin \alpha } \right) - 7{\text{sin}}\alpha \left( {\sin \alpha - 1} \right) = 0\]
Now taking \[\left( {\sin \alpha - 1} \right)\] as common we get:-
Solving it further we get:-
\[
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 + 2\sin \alpha - 7{\text{sin}}\alpha } \right] = 0 \\
\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha + 2 - 5\sin \alpha } \right] = 0 \\
\]
Now solving the quadratic equation using middle term split we get:-
\[\left( {\sin \alpha - 1} \right)\left[ {2{{\sin }^2}\alpha - 4\sin \alpha - \sin \alpha + 2} \right] = 0\]
Solving it further we get:-
\[ \Rightarrow \left( {\sin \alpha - 1} \right)\left( {2\sin \alpha - 1} \right)\left( {\sin \alpha - 2} \right) = 0\]
Now evaluating the value of \[\sin \alpha \]we get:-
\[
\sin \alpha = 1;2\sin \alpha = 1;\sin \alpha = 2 \\
\Rightarrow \sin \alpha = 1;\sin \alpha = \dfrac{1}{2};\sin \alpha = 2 \\
\]
Now since we know that \[ - 1 \leqslant \sin \theta \leqslant 1\]
Therefore, \[\sin \alpha \ne 2\]
Therefore,
\[\sin \alpha = 1;\sin \alpha = \dfrac{1}{2}\]
Since \[\alpha \] is in \[\left[ {0,2\pi } \right]\]
Now we know that,
\[
\sin \dfrac{\pi }{2} = 1 \\
\sin \dfrac{\pi }{6},\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2} \\
\]
Hence values of \[\alpha \] are: - \[\dfrac{\pi }{2},\dfrac{\pi }{6},\dfrac{{5\pi }}{6}\]
Hence there are 3 values of \[\alpha \]
Hence option C is the correct option.
Note: Students should note that sine function is positive in 1st and 2nd quadrant.
Also, the identity and the calculations should be correct and accurate.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

