
The number of solution of \[\sec x \cdot \cos 5x + 1 = 0\] in the interval \[\left[ {0,2\pi } \right]\] is
A.5
B.8
C.10
D.12
Answer
579.9k+ views
Hint: At first, we can write the given equation as \[\cos 5x + \cos x = 0\]
Then we have to apply the formula
\[\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We get \[2 \cdot \cos 3x \cdot \cos 2x = 0\]
After that we solve the equation, for the given interval.
Complete step-by-step answer:
Firstly we write the given equation, which is \[\sec x \cdot \cos 5x + 1 = 0\]
This equation can also be written as \[\cos 5x + \cos x = 0\]; since \[\cos x = \dfrac{1}{{\sec x}} \Rightarrow \sec x = \dfrac{1}{{\cos x}}\].
Now, we apply the formula,
\[\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Then we obtain from the last equation
\[
2\cos \left( {\dfrac{{5 + 1}}{2}} \right)x \cdot \cos \left( {\dfrac{{5 - 1}}{2}} \right)x = 0 \\
\Rightarrow \cos \dfrac{{6x}}{2} \cdot \cos \dfrac{{4x}}{2} = 0\left[ {\because 2 \ne 0} \right] \\
\Rightarrow \cos 3x \cdot \cos 2x = 0 \\
\]
This implies that
\[\cos 3x = 0...........(2)\]
And \[\cos 2x = 0...........(3)\]
Again, we know the formula,
\[
\cos x = 0 \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\]
Where, n is any integer.
Therefore, from the equation (2) we get
\[
3x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{6};where,n = 0, \pm 1, \pm 2,..... \\
\]
On substituting the values of n we get,
i.e. \[x = \dfrac{\pi }{6}, - \dfrac{\pi }{6},\dfrac{\pi }{2}, - \dfrac{\pi }{2},\dfrac{{5\pi }}{6}, - \dfrac{{5\pi }}{6},....\]\[ = \pm \dfrac{\pi }{6}, \pm \dfrac{\pi }{2}, \pm \dfrac{{5\pi }}{6},....\]
Also we get from the equation (3)
\[
2x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4};where,n = 0, \pm 1, \pm 2,..... \\
\]
On substituting the values of n we get,
i.e. \[x = \dfrac{\pi }{4}, - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}, - \dfrac{{3\pi }}{4},\dfrac{{5\pi }}{4}, - \dfrac{{5\pi }}{4},....\]\[ = \pm \dfrac{\pi }{4}, \pm \dfrac{\pi }{4}, \pm \dfrac{{5\pi }}{4},....\]
From these values of x which are in the interval \[\left[ {0,2\pi } \right]\] is \[x = \dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\dfrac{{3\pi }}{6},\dfrac{{5\pi }}{6},\dfrac{{5\pi }}{4},\dfrac{{7\pi }}{4},\dfrac{{7\pi }}{6},\dfrac{{9\pi }}{6}\]
Hence option C is the answer.
Note: One should know the basic formulas of trigonometry, and also know the general formula of all the trigonometric ratios.
They are:
\[
\sin {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\
\cos {{\theta }} = 0 \Rightarrow {{\theta }} = (2n + 1)\dfrac{\pi }{2} \\
\tan {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\
\]
Then we have to apply the formula
\[\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
We get \[2 \cdot \cos 3x \cdot \cos 2x = 0\]
After that we solve the equation, for the given interval.
Complete step-by-step answer:
Firstly we write the given equation, which is \[\sec x \cdot \cos 5x + 1 = 0\]
This equation can also be written as \[\cos 5x + \cos x = 0\]; since \[\cos x = \dfrac{1}{{\sec x}} \Rightarrow \sec x = \dfrac{1}{{\cos x}}\].
Now, we apply the formula,
\[\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
Then we obtain from the last equation
\[
2\cos \left( {\dfrac{{5 + 1}}{2}} \right)x \cdot \cos \left( {\dfrac{{5 - 1}}{2}} \right)x = 0 \\
\Rightarrow \cos \dfrac{{6x}}{2} \cdot \cos \dfrac{{4x}}{2} = 0\left[ {\because 2 \ne 0} \right] \\
\Rightarrow \cos 3x \cdot \cos 2x = 0 \\
\]
This implies that
\[\cos 3x = 0...........(2)\]
And \[\cos 2x = 0...........(3)\]
Again, we know the formula,
\[
\cos x = 0 \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\]
Where, n is any integer.
Therefore, from the equation (2) we get
\[
3x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{6};where,n = 0, \pm 1, \pm 2,..... \\
\]
On substituting the values of n we get,
i.e. \[x = \dfrac{\pi }{6}, - \dfrac{\pi }{6},\dfrac{\pi }{2}, - \dfrac{\pi }{2},\dfrac{{5\pi }}{6}, - \dfrac{{5\pi }}{6},....\]\[ = \pm \dfrac{\pi }{6}, \pm \dfrac{\pi }{2}, \pm \dfrac{{5\pi }}{6},....\]
Also we get from the equation (3)
\[
2x = \left( {2n + 1} \right)\dfrac{\pi }{2} \\
\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4};where,n = 0, \pm 1, \pm 2,..... \\
\]
On substituting the values of n we get,
i.e. \[x = \dfrac{\pi }{4}, - \dfrac{\pi }{4},\dfrac{{3\pi }}{4}, - \dfrac{{3\pi }}{4},\dfrac{{5\pi }}{4}, - \dfrac{{5\pi }}{4},....\]\[ = \pm \dfrac{\pi }{4}, \pm \dfrac{\pi }{4}, \pm \dfrac{{5\pi }}{4},....\]
From these values of x which are in the interval \[\left[ {0,2\pi } \right]\] is \[x = \dfrac{\pi }{6},\dfrac{\pi }{4},\dfrac{\pi }{2},\dfrac{{3\pi }}{4},\dfrac{{3\pi }}{6},\dfrac{{5\pi }}{6},\dfrac{{5\pi }}{4},\dfrac{{7\pi }}{4},\dfrac{{7\pi }}{6},\dfrac{{9\pi }}{6}\]
Hence option C is the answer.
Note: One should know the basic formulas of trigonometry, and also know the general formula of all the trigonometric ratios.
They are:
\[
\sin {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\
\cos {{\theta }} = 0 \Rightarrow {{\theta }} = (2n + 1)\dfrac{\pi }{2} \\
\tan {{\theta }} = 0 \Rightarrow {{\theta }} = n\pi \\
\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

