The number of rational number $\dfrac{p}{q}$where $p,q \in 1,2,3,4,5,6$ is
A) 23
B) 32
C) 36
D) 63
Answer
279.3k+ views
Hint: Rational numbers are those numbers which can be expressed in the form of $\dfrac{p}{q}$ where q≠0. In the given integer, if the factors of denominator of the given rational number $\dfrac{p}{q}$ is in the form of ${2^m}{5^n}$, where $m$ and $n$ are non-negative integer, then the decimal expression of the rational number is terminating otherwise they will not terminating and they repeat continuously.
Complete step by step solution:
Given,
Total digits given=6
The given digits can occupy the numerators and denominators places in ways, $^6{P_2}$
We simplify the $^6{P_2}$
\[ = \dfrac{{6!}}{{(6 - 2)!}}\]
\[ = \dfrac{{6 \times 5 \times 4!}}{{4!}}\]
\[ = 30\]
There are 30 possible ways.
$\left\{ {\dfrac{1}{1},\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\dfrac{1}{6},\dfrac{2}{1},\dfrac{2}{2},\dfrac{2}{3},\dfrac{2}{4},\dfrac{2}{5},\dfrac{2}{6},\dfrac{3}{1},\dfrac{3}{2},\dfrac{3}{3},\dfrac{3}{4},\dfrac{3}{5},\dfrac{3}{6},\dfrac{4}{1},\dfrac{4}{2},\dfrac{4}{3},\dfrac{4}{4},\dfrac{4}{5},\dfrac{4}{6},\dfrac{5}{1},\dfrac{5}{2},\dfrac{5}{3},\dfrac{5}{4},\dfrac{5}{5},\dfrac{5}{6},\dfrac{6}{1},\dfrac{6}{2},\dfrac{6}{3},\dfrac{6}{4},\dfrac{6}{5},\dfrac{6}{6}} \right\}$
In which these number represent same,
$\left\{ {\dfrac{1}{2},\dfrac{2}{4},\dfrac{3}{6}} \right\}$,$\left\{ {\dfrac{2}{1},\dfrac{4}{2},\dfrac{6}{3}} \right\}$,$\left\{ {\dfrac{2}{3},\dfrac{4}{6}} \right\}$,$\left\{ {\dfrac{3}{2},\dfrac{6}{4}} \right\}$,$\left\{ {\dfrac{1}{3},\dfrac{2}{6}} \right\}$ and $\left\{ {\dfrac{3}{1},\dfrac{6}{2}} \right\}$
In these case we consider only one case
$ = no.\,of\,rational\,number$
$ = 30 - (2 + 2 + 1 + 1 + 1 + 1) + 1$
1 is a rational number.
$ = 31 - 8$
$ = 23$
Therefore, The number of rational numbers $\dfrac{p}{q}$where $p,q \in 1,2,3,4,5,6$ is 23. So, the correct option is (A).
Note:
The number system or numeral system is the system of naming. There are various types of number systems. Natural numbers are those used for counting. Whole numbers are those in zero including with natural numbers. Integers are those which include positive and negative numbers.
Complete step by step solution:
Given,
Total digits given=6
The given digits can occupy the numerators and denominators places in ways, $^6{P_2}$
We simplify the $^6{P_2}$
\[ = \dfrac{{6!}}{{(6 - 2)!}}\]
\[ = \dfrac{{6 \times 5 \times 4!}}{{4!}}\]
\[ = 30\]
There are 30 possible ways.
$\left\{ {\dfrac{1}{1},\dfrac{1}{2},\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5},\dfrac{1}{6},\dfrac{2}{1},\dfrac{2}{2},\dfrac{2}{3},\dfrac{2}{4},\dfrac{2}{5},\dfrac{2}{6},\dfrac{3}{1},\dfrac{3}{2},\dfrac{3}{3},\dfrac{3}{4},\dfrac{3}{5},\dfrac{3}{6},\dfrac{4}{1},\dfrac{4}{2},\dfrac{4}{3},\dfrac{4}{4},\dfrac{4}{5},\dfrac{4}{6},\dfrac{5}{1},\dfrac{5}{2},\dfrac{5}{3},\dfrac{5}{4},\dfrac{5}{5},\dfrac{5}{6},\dfrac{6}{1},\dfrac{6}{2},\dfrac{6}{3},\dfrac{6}{4},\dfrac{6}{5},\dfrac{6}{6}} \right\}$
In which these number represent same,
$\left\{ {\dfrac{1}{2},\dfrac{2}{4},\dfrac{3}{6}} \right\}$,$\left\{ {\dfrac{2}{1},\dfrac{4}{2},\dfrac{6}{3}} \right\}$,$\left\{ {\dfrac{2}{3},\dfrac{4}{6}} \right\}$,$\left\{ {\dfrac{3}{2},\dfrac{6}{4}} \right\}$,$\left\{ {\dfrac{1}{3},\dfrac{2}{6}} \right\}$ and $\left\{ {\dfrac{3}{1},\dfrac{6}{2}} \right\}$
In these case we consider only one case
$ = no.\,of\,rational\,number$
$ = 30 - (2 + 2 + 1 + 1 + 1 + 1) + 1$
1 is a rational number.
$ = 31 - 8$
$ = 23$
Therefore, The number of rational numbers $\dfrac{p}{q}$where $p,q \in 1,2,3,4,5,6$ is 23. So, the correct option is (A).
Note:
The number system or numeral system is the system of naming. There are various types of number systems. Natural numbers are those used for counting. Whole numbers are those in zero including with natural numbers. Integers are those which include positive and negative numbers.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
