
The number of integral values of $x$ satisfying the equation ${\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right)$ is
Answer
582.9k+ views
Hint: Simplify the given equation using the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$.
Complete step-by-step answer:
Now, simplify the equation by taking tan of the resultant equation on both sides, We will get an equation in $x$. Solve the equation to find the value of $x$. In the final answer, take only integral values of $x$.
We are given, ${\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right)$.
First let us simplify the given equations using the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$.
$
\Rightarrow {\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right) \\
\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3x + 5x}}{{1 - \left( {3x} \right)\left( {5x} \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{7x + 2x}}{{1 - \left( {7x} \right)\left( {2x} \right)}}} \right) \\
\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{8x}}{{1 - 15{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{9x}}{{1 - 14{x^2}}}} \right) \\
$
On taking tan on both sides, we get
\[\left( {\dfrac{{8x}}{{1 - 15{x^2}}}} \right) = \left( {\dfrac{{9x}}{{1 - 14{x^2}}}} \right)\]
Simplify the equation and solve for the value of $x$.
$
\Rightarrow 8x\left( {1 - 14{x^2}} \right) = 9x\left( {1 - 15{x^2}} \right) \\
\Rightarrow 8x - 112{x^3} = 9x - 135{x^3} \\
\Rightarrow 23{x^3} - x = 0 \\
\Rightarrow x\left( {23{x^2} - 1} \right) = 0 \\
\Rightarrow x = 0,x = \pm \dfrac{1}{{\sqrt {23} }} \\
$
The only integer value of $x$ is 0.
Hence, there is only one integral values of $x$satisfying the equation ${\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right)$.
Note: It is important to simplify question using the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ to avoid difficult calculations. After simplifying, we will consider only integral values of $x$.
In the final answer, we have to write the number of integral solutions and not the actual integral value of $x$, therefore, the answer will be 1 and not 0.
Complete step-by-step answer:
Now, simplify the equation by taking tan of the resultant equation on both sides, We will get an equation in $x$. Solve the equation to find the value of $x$. In the final answer, take only integral values of $x$.
We are given, ${\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right)$.
First let us simplify the given equations using the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$.
$
\Rightarrow {\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right) \\
\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{3x + 5x}}{{1 - \left( {3x} \right)\left( {5x} \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{7x + 2x}}{{1 - \left( {7x} \right)\left( {2x} \right)}}} \right) \\
\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{8x}}{{1 - 15{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{9x}}{{1 - 14{x^2}}}} \right) \\
$
On taking tan on both sides, we get
\[\left( {\dfrac{{8x}}{{1 - 15{x^2}}}} \right) = \left( {\dfrac{{9x}}{{1 - 14{x^2}}}} \right)\]
Simplify the equation and solve for the value of $x$.
$
\Rightarrow 8x\left( {1 - 14{x^2}} \right) = 9x\left( {1 - 15{x^2}} \right) \\
\Rightarrow 8x - 112{x^3} = 9x - 135{x^3} \\
\Rightarrow 23{x^3} - x = 0 \\
\Rightarrow x\left( {23{x^2} - 1} \right) = 0 \\
\Rightarrow x = 0,x = \pm \dfrac{1}{{\sqrt {23} }} \\
$
The only integer value of $x$ is 0.
Hence, there is only one integral values of $x$satisfying the equation ${\tan ^{ - 1}}\left( {3x} \right) + {\tan ^{ - 1}}\left( {5x} \right) = {\tan ^{ - 1}}\left( {7x} \right) + {\tan ^{ - 1}}\left( {2x} \right)$.
Note: It is important to simplify question using the formula, ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$ to avoid difficult calculations. After simplifying, we will consider only integral values of $x$.
In the final answer, we have to write the number of integral solutions and not the actual integral value of $x$, therefore, the answer will be 1 and not 0.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

