
The number of complex numbers z such that $\left| z+i \right|=\left| z-1 \right|=\left| z+1 \right|$
$\begin{align}
& \text{a) 0} \\
& \text{b) 1} \\
& \text{c) 2} \\
& \text{d) None of these} \\
\end{align}$
Answer
534.9k+ views
Hint: Now to solve the equation we will consider three equations $\left| z+1 \right|=\left| z-1 \right|$, $\left| z+1 \right|=\left| z+i \right|$ and $\left| z+i \right|=\left| z-1 \right|$. Now in this equation we will substitute z as $x+iy$ and simplify the equations to find the values of x and y. Hence we will get the number of solutions of the equation.
Complete step by step solution:
Now consider the given equation $\left| z+i \right|=\left| z-1 \right|=\left| z+1 \right|$.
Let us say $z=x+iy$
Now first consider the equation $\left| z-1 \right|=\left| z+1 \right|$
Now substituting the equation $z=x+iy$ we get,
$\begin{align}
& \Rightarrow \left| x+iy-1 \right|=\left| x+iy+1 \right| \\
& \Rightarrow \left| \left( x-1 \right)+iy \right|=\left| \left( x+1 \right)+iy \right| \\
\end{align}$
Now we know that $\left| a+ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
$\Rightarrow \sqrt{{{\left( x-1 \right)}^{2}}+{{y}^{2}}}=\sqrt{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}$
Now squaring both sides of the equation we get,
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{y}^{2}}={{\left( x+1 \right)}^{2}}+{{y}^{2}}$
Subtracting ${{y}^{2}}$ on both sides of the equation we get,
$\Rightarrow {{\left( x-1 \right)}^{2}}={{\left( x+1 \right)}^{2}}$
Now let us open the bracket by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ Hence we get,
$\Rightarrow {{x}^{2}}-2x+1={{x}^{2}}+2x+1$
Now we will again subtract ${{x}^{2}}+1$ on both sides we get,
$\Rightarrow -2x=2x$
Now the only solution to this is x = 0.
Hence we get x = 0.
Now consider the equation $\left| z+i \right|=\left| z-1 \right|$
Now substituting the value of z we get,
$\begin{align}
& \Rightarrow \left| x+iy+i \right|=\left| x+iy-1 \right| \\
& \Rightarrow \left| x+\left( y+1 \right)i \right|=\left| \left( x-1 \right)+iy \right| \\
\end{align}$
Now again using the definition of modulus of complex numbers we get,
$\Rightarrow \sqrt{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}=\sqrt{{{\left( x-1 \right)}^{2}}+{{y}^{2}}}$
Now squaring the number on both sides we get,
$\begin{align}
& \Rightarrow {{x}^{2}}+{{\left( y+1 \right)}^{2}}={{\left( x-1 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2y+1={{x}^{2}}+1-2x+{{y}^{2}} \\
& \Rightarrow 2y=-2x \\
\end{align}$
Now substituting the value of x in the equation we get y = 0
Hence we have x = y = 0.
Now consider the equation $\left| z+i \right|=\left| z+1\right|$
Now let us simplify this equation too in the same manner. Hence we get,
$\begin{align}
& \Rightarrow \left| x+iy+i \right|=\left| x+iy+1 \right| \\
& \Rightarrow \left| x+\left( y+1 \right)i \right|=\left| \left( x+1 \right)+iy \right| \\
& \Rightarrow {{x}^{2}}+{{\left( y+1 \right)}^{2}}={{\left( x+1 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2y+1={{x}^{2}}+1+2x+{{y}^{2}} \\
& \Rightarrow 2y=2x \\
& \Rightarrow x=y \\
\end{align}$
Hence the only solution of this equation x = y = 0.
So, the correct answer is “Option b”.
Note: Now note that the modulus of complex numbers is nothing but the distance of the complex number from origin in the complex plane. Hence we can calculate this distance using the Pythagoras theorem.
Complete step by step solution:
Now consider the given equation $\left| z+i \right|=\left| z-1 \right|=\left| z+1 \right|$.
Let us say $z=x+iy$
Now first consider the equation $\left| z-1 \right|=\left| z+1 \right|$
Now substituting the equation $z=x+iy$ we get,
$\begin{align}
& \Rightarrow \left| x+iy-1 \right|=\left| x+iy+1 \right| \\
& \Rightarrow \left| \left( x-1 \right)+iy \right|=\left| \left( x+1 \right)+iy \right| \\
\end{align}$
Now we know that $\left| a+ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}$
$\Rightarrow \sqrt{{{\left( x-1 \right)}^{2}}+{{y}^{2}}}=\sqrt{{{\left( x+1 \right)}^{2}}+{{y}^{2}}}$
Now squaring both sides of the equation we get,
$\Rightarrow {{\left( x-1 \right)}^{2}}+{{y}^{2}}={{\left( x+1 \right)}^{2}}+{{y}^{2}}$
Subtracting ${{y}^{2}}$ on both sides of the equation we get,
$\Rightarrow {{\left( x-1 \right)}^{2}}={{\left( x+1 \right)}^{2}}$
Now let us open the bracket by using the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ Hence we get,
$\Rightarrow {{x}^{2}}-2x+1={{x}^{2}}+2x+1$
Now we will again subtract ${{x}^{2}}+1$ on both sides we get,
$\Rightarrow -2x=2x$
Now the only solution to this is x = 0.
Hence we get x = 0.
Now consider the equation $\left| z+i \right|=\left| z-1 \right|$
Now substituting the value of z we get,
$\begin{align}
& \Rightarrow \left| x+iy+i \right|=\left| x+iy-1 \right| \\
& \Rightarrow \left| x+\left( y+1 \right)i \right|=\left| \left( x-1 \right)+iy \right| \\
\end{align}$
Now again using the definition of modulus of complex numbers we get,
$\Rightarrow \sqrt{{{x}^{2}}+{{\left( y+1 \right)}^{2}}}=\sqrt{{{\left( x-1 \right)}^{2}}+{{y}^{2}}}$
Now squaring the number on both sides we get,
$\begin{align}
& \Rightarrow {{x}^{2}}+{{\left( y+1 \right)}^{2}}={{\left( x-1 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2y+1={{x}^{2}}+1-2x+{{y}^{2}} \\
& \Rightarrow 2y=-2x \\
\end{align}$
Now substituting the value of x in the equation we get y = 0
Hence we have x = y = 0.
Now consider the equation $\left| z+i \right|=\left| z+1\right|$
Now let us simplify this equation too in the same manner. Hence we get,
$\begin{align}
& \Rightarrow \left| x+iy+i \right|=\left| x+iy+1 \right| \\
& \Rightarrow \left| x+\left( y+1 \right)i \right|=\left| \left( x+1 \right)+iy \right| \\
& \Rightarrow {{x}^{2}}+{{\left( y+1 \right)}^{2}}={{\left( x+1 \right)}^{2}}+{{y}^{2}} \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}+2y+1={{x}^{2}}+1+2x+{{y}^{2}} \\
& \Rightarrow 2y=2x \\
& \Rightarrow x=y \\
\end{align}$
Hence the only solution of this equation x = y = 0.
So, the correct answer is “Option b”.
Note: Now note that the modulus of complex numbers is nothing but the distance of the complex number from origin in the complex plane. Hence we can calculate this distance using the Pythagoras theorem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

