
The number of beats heard per second if there are three sources of sound of frequencies ($n - 1$), $n$ and ($n + 1$) of equal intensities sounded together is:
A. $2$
B. $1$
C. $4$
D. $3$
Answer
555.6k+ views
Hint: First, we will express the displacement equation of each sound wave and find the expression for the resultant displacement. Using the conditions for the maxima and minima of the sound waves, beats per second can be found out.
Complete step by step answer:
Since the intensities of the sounds heard from three different sources are given to be equal, we can say that their amplitudes will also be equal.
First, we can write the displacement equation corresponding to the source producing a sound of frequency ($n - 1$) as
\[{y_1} = a\sin 2\pi \left( {n - 1} \right)t\]
Here, $t$ is the time at the instant and $a$ is the amplitude of sound.
The displacement equation corresponding to the source producing a sound of frequency $n$ is written as,
${y_2} = a\sin 2\pi nt$
The displacement equation corresponding to the source producing sound of frequency ($n + 1$) is written as,
${y_3} = a\sin 2\pi \left( {n + 1} \right)t$
Now, we can write the resultant displacement equation for the three sound waves as
\[
y = {y_1} + {y_2} + {y_3}\\
= a\sin 2\pi \left( {n - 1} \right)t + a\sin 2\pi nt + a\sin 2\pi \left( {n + 1} \right)t\\
= a\left( {\sin 2\pi \left( {n - 1} \right)t + \sin 2\pi \left( {n + 1} \right)t} \right) + a\sin 2\pi nt
\]
Since $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we can write
$
\sin 2\pi \left( {n - 1} \right)t + \sin 2\pi \left( {n + 1} \right)t = 2\sin \left( {2\pi t\left( {\dfrac{{2n}}{2}} \right)} \right)\cos \left( {2\pi t\left( {\dfrac{{ - 2}}{2}} \right)} \right)\\
= 2\sin 2\pi nt\cos 2\pi t
$
Now, we will put the above result in the equation for the resultant displacement.
$
y = 2a\sin 2\pi nt\cos 2\pi t + a\sin 2\pi nt\\
= a\left( {1 + 2\cos 2\pi t} \right)\sin 2\pi nt
$
In the above equation, the term $a\left( {1 + 2\cos 2\pi t} \right)$ represents amplitude. Hence, the resultant amplitude is
$A = a\left( {1 + 2\cos 2\pi t} \right)$
The resultant amplitude will have a maximum value when
$
2\pi t = 2\pi q\\
t = q
$
where $q = 0,1,2,3..$
Hence, $t = 0,1,2,3,....$
Thus, we can say that there is an interval of $1\,{\rm{s}}$ between two adjacent maxima.
In the same way, the resultant amplitude will have a minimum value when
$
2\pi t = 2\pi q + \dfrac{{2\pi }}{3}\\
t = q + \dfrac{1}{3}
$
where $q = 0,1,2,3....$
Hence, $t = \dfrac{1}{3},\dfrac{4}{3},\dfrac{7}{3},\dfrac{{10}}{3},....$
Thus, we can say that there is an interval of $1\,{\rm{s}}$ between two adjacent minima also.
The time interval for both the maxima and the minima are equal to $1\;{\rm{s}}$. Since frequency is the reciprocal of the time interval, the frequency of the beats heard is $1\,{\rm{Hz}}$. Therefore, one beat per second will be heard if there are three sound sources.
So, the correct answer is “Option B”.
Note:
Beats are produced when the intensity of the sound varies as a result of the superimposing of sound waves of nearby frequencies.
The displacement equation corresponding to the source producing a sound of frequency ($n - 1$).
The displacement equation corresponding to the source producing sound of frequency ($n + 1$).
We can find the beats per second or the beat frequency of two sound waves by finding the difference between the frequencies of the waves.
Complete step by step answer:
Since the intensities of the sounds heard from three different sources are given to be equal, we can say that their amplitudes will also be equal.
First, we can write the displacement equation corresponding to the source producing a sound of frequency ($n - 1$) as
\[{y_1} = a\sin 2\pi \left( {n - 1} \right)t\]
Here, $t$ is the time at the instant and $a$ is the amplitude of sound.
The displacement equation corresponding to the source producing a sound of frequency $n$ is written as,
${y_2} = a\sin 2\pi nt$
The displacement equation corresponding to the source producing sound of frequency ($n + 1$) is written as,
${y_3} = a\sin 2\pi \left( {n + 1} \right)t$
Now, we can write the resultant displacement equation for the three sound waves as
\[
y = {y_1} + {y_2} + {y_3}\\
= a\sin 2\pi \left( {n - 1} \right)t + a\sin 2\pi nt + a\sin 2\pi \left( {n + 1} \right)t\\
= a\left( {\sin 2\pi \left( {n - 1} \right)t + \sin 2\pi \left( {n + 1} \right)t} \right) + a\sin 2\pi nt
\]
Since $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$, we can write
$
\sin 2\pi \left( {n - 1} \right)t + \sin 2\pi \left( {n + 1} \right)t = 2\sin \left( {2\pi t\left( {\dfrac{{2n}}{2}} \right)} \right)\cos \left( {2\pi t\left( {\dfrac{{ - 2}}{2}} \right)} \right)\\
= 2\sin 2\pi nt\cos 2\pi t
$
Now, we will put the above result in the equation for the resultant displacement.
$
y = 2a\sin 2\pi nt\cos 2\pi t + a\sin 2\pi nt\\
= a\left( {1 + 2\cos 2\pi t} \right)\sin 2\pi nt
$
In the above equation, the term $a\left( {1 + 2\cos 2\pi t} \right)$ represents amplitude. Hence, the resultant amplitude is
$A = a\left( {1 + 2\cos 2\pi t} \right)$
The resultant amplitude will have a maximum value when
$
2\pi t = 2\pi q\\
t = q
$
where $q = 0,1,2,3..$
Hence, $t = 0,1,2,3,....$
Thus, we can say that there is an interval of $1\,{\rm{s}}$ between two adjacent maxima.
In the same way, the resultant amplitude will have a minimum value when
$
2\pi t = 2\pi q + \dfrac{{2\pi }}{3}\\
t = q + \dfrac{1}{3}
$
where $q = 0,1,2,3....$
Hence, $t = \dfrac{1}{3},\dfrac{4}{3},\dfrac{7}{3},\dfrac{{10}}{3},....$
Thus, we can say that there is an interval of $1\,{\rm{s}}$ between two adjacent minima also.
The time interval for both the maxima and the minima are equal to $1\;{\rm{s}}$. Since frequency is the reciprocal of the time interval, the frequency of the beats heard is $1\,{\rm{Hz}}$. Therefore, one beat per second will be heard if there are three sound sources.
So, the correct answer is “Option B”.
Note:
Beats are produced when the intensity of the sound varies as a result of the superimposing of sound waves of nearby frequencies.
The displacement equation corresponding to the source producing a sound of frequency ($n - 1$).
The displacement equation corresponding to the source producing sound of frequency ($n + 1$).
We can find the beats per second or the beat frequency of two sound waves by finding the difference between the frequencies of the waves.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

