
The number ${3^{13}} - {3^{10}}$ is divisible by
(i)2 and 3 only
(ii)3 and 10 only
(iii)2,3,and 10 only
(iv)all 2,3 and 13
Answer
576.9k+ views
Hint: We need to reduce the expression to a simpler form by taking out the common element ${3^{10}}$and then calculate the value of $({3^3} - 1)$ and by checking the divisibility of the obtained expression we get our answer
Complete step by step answer:
The given expression is ${3^{13}} - {3^{10}}$
In order to reduce it into its simpler form,lets take ${3^{10}}$ as common
$\begin{gathered}
\Rightarrow {3^{10}}({3^3} - 1) \\
\\
\end{gathered} $
Step 2:Now let’s make this expression much simpler.
We know that ${3^3} = 27$
Hence we get,
$\begin{gathered}
\Rightarrow {3^{10}}(27 - 1) \\
\Rightarrow {3^{10}}(26) \\
\end{gathered} $
Step 3:From this it is clearly understood that the expression is divisible by 3.
The expression can also be written as ${3^{10}}(2*13)$
This shows that it is a multiple of 2 and 13.
Hence it is divisible by 2 and 13 also.
Therefore the given expression is divisible by 2,3 and 13.
The answer is option d.
Note: 1)In problems of these kinds, it is enough if we reduce the expression to its simplest form. There is no need to keep calculating the values of ${3^{13}}$ and ${3^{10}}$. This will take a lot of time and there are chances of making mistakes.
2)You need to read the question more carefully as many students write ${3^{13}} - {3^{10}} = {3^3}$, which is completely wrong.
3)Many students get distracted by the choices provided and end up choosing that it is divisible by 10 as the expression consists of the term
Complete step by step answer:
The given expression is ${3^{13}} - {3^{10}}$
In order to reduce it into its simpler form,lets take ${3^{10}}$ as common
$\begin{gathered}
\Rightarrow {3^{10}}({3^3} - 1) \\
\\
\end{gathered} $
Step 2:Now let’s make this expression much simpler.
We know that ${3^3} = 27$
Hence we get,
$\begin{gathered}
\Rightarrow {3^{10}}(27 - 1) \\
\Rightarrow {3^{10}}(26) \\
\end{gathered} $
Step 3:From this it is clearly understood that the expression is divisible by 3.
The expression can also be written as ${3^{10}}(2*13)$
This shows that it is a multiple of 2 and 13.
Hence it is divisible by 2 and 13 also.
Therefore the given expression is divisible by 2,3 and 13.
The answer is option d.
Note: 1)In problems of these kinds, it is enough if we reduce the expression to its simplest form. There is no need to keep calculating the values of ${3^{13}}$ and ${3^{10}}$. This will take a lot of time and there are chances of making mistakes.
2)You need to read the question more carefully as many students write ${3^{13}} - {3^{10}} = {3^3}$, which is completely wrong.
3)Many students get distracted by the choices provided and end up choosing that it is divisible by 10 as the expression consists of the term
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

