
The ${n^{th}}$ derivative of $x{e^x}$ vanishes when
$\left( a \right)$ x = 0
$\left( b \right)$ x = – 1
$\left( c \right)$ x = - n
$\left( d \right)$ x = n
Answer
587.7k+ views
Hint: In this particular question use the concept that the differentiation of $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ and use the concept that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

