
The ${n^{th}}$ derivative of $x{e^x}$ vanishes when
$\left( a \right)$ x = 0
$\left( b \right)$ x = – 1
$\left( c \right)$ x = - n
$\left( d \right)$ x = n
Answer
573.3k+ views
Hint: In this particular question use the concept that the differentiation of $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ and use the concept that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

