
The ${n^{th}}$ derivative of $x{e^x}$ vanishes when
$\left( a \right)$ x = 0
$\left( b \right)$ x = – 1
$\left( c \right)$ x = - n
$\left( d \right)$ x = n
Answer
508.2k+ views
Hint: In this particular question use the concept that the differentiation of $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ and use the concept that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Complete step-by-step answer:
Given equation
$x{e^x}$
Let, $f\left( x \right) = x{e^x}$
Now differentiate the above equation w.r.t x and using the property that $\dfrac{d}{{dx}}mn = m\dfrac{d}{{dx}}n + n\dfrac{d}{{dx}}m$ so we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = x\dfrac{d}{{dx}}{e^x} + {e^x}\dfrac{d}{{dx}}x$
Now as we know that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}},\dfrac{d}{{dx}}{e^x} = {e^x}$ so we have,
$ \Rightarrow f'\left( x \right) = x{e^x} + {e^x}\left( 1 \right)$
$ \Rightarrow f'\left( x \right) = {e^x} + x{e^x}$
Now again differentiate it w.r.t x we have,
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}\left( {{e^x} + x{e^x}} \right)$
$ \Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = \dfrac{d}{{dx}}{e^x} + \dfrac{d}{{dx}}x{e^x}$
$ \Rightarrow f''\left( x \right) = {e^x} + {e^x} + x{e^x}$
$ \Rightarrow f''\left( x \right) = 2{e^x} + x{e^x}$
Now again differentiate w.r.t x we have,
\[ \Rightarrow \dfrac{d}{{dx}}f''\left( x \right) = \dfrac{d}{{dx}}\left( {2{e^x} + x{e^x}} \right)\]
\[ \Rightarrow f'''\left( x \right) = 2{e^x} + {e^x} + x{e^x}\]
\[ \Rightarrow f'''\left( x \right) = 3{e^x} + x{e^x}\]
Similarly
.
.
.
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x}$............. (1)
Now according to the question we have to find out the condition when ${n^{th}}$ derivative vanishes.
$ \Rightarrow {f^n}\left( x \right) = 0$
So from equation (1) we have,
$ \Rightarrow {f^n}\left( x \right) = n{e^x} + x{e^x} = 0$
$ \Rightarrow n{e^x} + x{e^x} = 0$
$ \Rightarrow x{e^x} = - n{e^x}$
$ \Rightarrow x = - n$
So this is the required condition.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is stated above then using these properties differentiate the equation n times as above then equate its ${n^{th}}$ derivative is zero and simplify as above, we will get the required condition.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
