
The Normal form of the line ${\text{x}}\,{\text{ + }}\,{\text{y}}\,{\text{ + }}\,\sqrt {\text{2}} {\text{ = 0}}$ is
Answer
595.8k+ views
Hint: Generally a normal form of the line is in the form.
${\text{x}}\cos \,\theta \, + \,{\text{y}}\,{\text{sin }}\theta \,{\text{ = }}\,{\text{1}}{\text{.}}$
So we need to express the given equation ${\text{x}}\,{\text{ + }}\,{\text{y}}\, + \,\sqrt 2 \, = \,0$ in the normal from
Complete step-by-step answer:
General form is given as:
\[\begin{gathered}
{\text{x}}\cos \,\theta \, + \,{\text{y}}\,{\text{sin }}\theta \,{\text{ = }}\,{\text{1}} \\
{\text{x}}\,{\text{ + }}\,{\text{y}}\,{\text{ + }}\,\sqrt 2 \, = \,0 \\
{\text{step}} - 1 \\
{\text{x}}\,{\text{ + }}\,{\text{y}}\, = \, - \sqrt 2 \\
{\text{step}}\,{\text{ - 2, }} \\
{\text{divide}}\,{\text{by}}\,' - \sqrt 2 ' \\
(x)\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\, + \,({\text{y}})\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\, = \,1 \\
\end{gathered} \]
Now compare with standard equation
\[\cos \theta \, = \,\dfrac{-1}{{\sqrt 2 }};\,\sin \theta \, = \,\dfrac{{ - 1}}{{\sqrt 2 }}\]
Both $\cos \,\theta $ & $\sin \theta $ takes $'\dfrac{{ - 1}}{{\sqrt 2 }}'$ in 3rd Quadrant,
$\therefore \,\theta \, = \,\dfrac{{5\pi }}{4}$
$\therefore \,{\text{x}}\,\cos \,\dfrac{{5\pi }}{4}\, + \,{\text{y}}\,\sin \dfrac{{5\pi }}{4}\, = \,1$
Note: The common mistake can be made here is taking the wrong value of ‘’. Like need to be careful of the sign values in respective quadrants.
${\text{x}}\cos \,\theta \, + \,{\text{y}}\,{\text{sin }}\theta \,{\text{ = }}\,{\text{1}}{\text{.}}$
So we need to express the given equation ${\text{x}}\,{\text{ + }}\,{\text{y}}\, + \,\sqrt 2 \, = \,0$ in the normal from
Complete step-by-step answer:
General form is given as:
\[\begin{gathered}
{\text{x}}\cos \,\theta \, + \,{\text{y}}\,{\text{sin }}\theta \,{\text{ = }}\,{\text{1}} \\
{\text{x}}\,{\text{ + }}\,{\text{y}}\,{\text{ + }}\,\sqrt 2 \, = \,0 \\
{\text{step}} - 1 \\
{\text{x}}\,{\text{ + }}\,{\text{y}}\, = \, - \sqrt 2 \\
{\text{step}}\,{\text{ - 2, }} \\
{\text{divide}}\,{\text{by}}\,' - \sqrt 2 ' \\
(x)\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\, + \,({\text{y}})\left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right)\, = \,1 \\
\end{gathered} \]
Now compare with standard equation
\[\cos \theta \, = \,\dfrac{-1}{{\sqrt 2 }};\,\sin \theta \, = \,\dfrac{{ - 1}}{{\sqrt 2 }}\]
Both $\cos \,\theta $ & $\sin \theta $ takes $'\dfrac{{ - 1}}{{\sqrt 2 }}'$ in 3rd Quadrant,
$\therefore \,\theta \, = \,\dfrac{{5\pi }}{4}$
$\therefore \,{\text{x}}\,\cos \,\dfrac{{5\pi }}{4}\, + \,{\text{y}}\,\sin \dfrac{{5\pi }}{4}\, = \,1$
Note: The common mistake can be made here is taking the wrong value of ‘’. Like need to be careful of the sign values in respective quadrants.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

