
The negation of the statement: ‘Getting above 95 percentage marks is a necessary condition for Hema to get the admission in a good college’.
$a.{\text{ }}$Hema gets above 95 percentage marks but she does not get the admission in a good college.
$b.{\text{ }}$Hema does not get above 95 percentage marks and she gets admission in a good college.
$c.{\text{ }}$If Hema does not get above 95 percentage marks then she will not get the admission in a good college.
$d.{\text{ }}$Hema does not get above 95 percentage marks or she gets admission in a good college.
Answer
605.4k+ views
Hint: - Negation of $q \to p = \sim \left( {q \to p} \right)$
Let we suppose $p = $getting above 95 percentage marks.
And let, $q = $to get admission in a good college.
$ \Rightarrow $Necessary condition according to question is
I.e. $p$ is a necessary condition for $q$.
$ \Rightarrow $$q$ Depends on $p$
$ \Rightarrow q \to p$
Now we have to find out the negation of above condition
$ \Rightarrow $Negation of $q \to p = \sim \left( {q \to p} \right)$
By condition law
\[ \sim \left( {q \to p} \right) \equiv q \wedge \sim p\] ($q$ And negation of $p$)
By commutative law
\[q \wedge \sim p \equiv \sim p \wedge q\] (Negation of $p$ and $q$)………………… (2)
$ \Rightarrow $Negation of $p$ is$ = $opposite of $p$
$ = $Does not get above 95 percentage marks.
From equation (2)
Hema does not get above 95 percentage marks and she gets admission in a good college.
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition law, commutative law which is written above, and always remember that negation is a contradiction or denial of something, then after applying these properties we will get the required answer.
Let we suppose $p = $getting above 95 percentage marks.
And let, $q = $to get admission in a good college.
$ \Rightarrow $Necessary condition according to question is
I.e. $p$ is a necessary condition for $q$.
$ \Rightarrow $$q$ Depends on $p$
$ \Rightarrow q \to p$
Now we have to find out the negation of above condition
$ \Rightarrow $Negation of $q \to p = \sim \left( {q \to p} \right)$
By condition law
\[ \sim \left( {q \to p} \right) \equiv q \wedge \sim p\] ($q$ And negation of $p$)
By commutative law
\[q \wedge \sim p \equiv \sim p \wedge q\] (Negation of $p$ and $q$)………………… (2)
$ \Rightarrow $Negation of $p$ is$ = $opposite of $p$
$ = $Does not get above 95 percentage marks.
From equation (2)
Hema does not get above 95 percentage marks and she gets admission in a good college.
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition law, commutative law which is written above, and always remember that negation is a contradiction or denial of something, then after applying these properties we will get the required answer.
Recently Updated Pages
Full form of MODEM?

What is a numerical label assigned to each device in a network?

Which software tool enables user interaction with the computer?

What is the file extension for MS Word file?

Full form of JPEG?

Webpages are written using?

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Today is Monday After 61 days it will be aWednesda-class-8-maths-CBSE

