
The nature of roots of the equation ${{x}^{2}}+x+1=0$ is:
(A). Real and equal
(B). Real and unequal
(C). Imaginary and distinct
(D). Imaginary and equal
Answer
598.5k+ views
Hint: Find the discriminant of the equation given below and use the relation of discriminant with the nature of roots to reach to the answer. You might also need to use the property that imaginary roots appear in pairs for the polynomials with real coefficients.
Complete step-by-step solution -
For a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ , the discriminant D is given by: $D={{b}^{2}}-4ac$ , and if discriminant is positive, the roots of the equation are real and distinct, while D=0 means real, and equal roots and D negative refers to imaginary roots.
Now using the above property for the equation ${{x}^{2}}+x+1=0$ . The discriminant of the equation is:
$D={{b}^{2}}-4ac=1-4\times 1\times 1=-3$
As discriminant is negative, we can say that the roots of the equation are imaginary. Also, the coefficients of the equation are real, and we know that the imaginary roots appear in conjugate pairs for polynomials with real coefficients, so the roots of the equation ${{x}^{2}}+x+1=0$ are imaginary and distinct.
Hence, the answer to the above question is option (c).
Note: While finding the roots of the quadratic equation, it is always prescribed to check the nature of the roots first, as this might help you to select the better way of finding the roots. Point to remember is that Middle term splitting is mostly useful when you have rational roots in case of imaginary or irrational roots; it becomes difficult to figure out the numbers manually.
Complete step-by-step solution -
For a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ , the discriminant D is given by: $D={{b}^{2}}-4ac$ , and if discriminant is positive, the roots of the equation are real and distinct, while D=0 means real, and equal roots and D negative refers to imaginary roots.
Now using the above property for the equation ${{x}^{2}}+x+1=0$ . The discriminant of the equation is:
$D={{b}^{2}}-4ac=1-4\times 1\times 1=-3$
As discriminant is negative, we can say that the roots of the equation are imaginary. Also, the coefficients of the equation are real, and we know that the imaginary roots appear in conjugate pairs for polynomials with real coefficients, so the roots of the equation ${{x}^{2}}+x+1=0$ are imaginary and distinct.
Hence, the answer to the above question is option (c).
Note: While finding the roots of the quadratic equation, it is always prescribed to check the nature of the roots first, as this might help you to select the better way of finding the roots. Point to remember is that Middle term splitting is mostly useful when you have rational roots in case of imaginary or irrational roots; it becomes difficult to figure out the numbers manually.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

