Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The most general values of $\theta $ satisfying \[tan{\text{ }}\theta {\text{ }} + {\text{ }}tan{\text{ }}\left( {\dfrac{{3\pi }}{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2\]are given by
\[\left( 1 \right)\]\[2n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z\]
\[\left( 2 \right)\]\[n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z\]
\[\left( 3 \right)\]\[2n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{6},{\text{ }}n \in Z\]
\[\left( 4 \right)\]\[n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{6},{\text{ }}n \in Z\]

Answer
VerifiedVerified
506.4k+ views
Hint: We have to find the general value of $\theta $ . We solve this by using the trigonometric identities and the general values of the trigonometric functions . We also know the tan function is the ratio of sin function to cos function . Using the trigonometric identities of tan and cot functions and general solutions of trigonometric functions . On simplifying the equation we can find the value of $\theta $.

Complete step-by-step answer:
Given :
\[tan{\text{ }}\theta {\text{ }} + {\text{ }}tan{\text{ }}\left( {\dfrac{{3\pi }}{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2\]
Also , $\dfrac{{3\pi }}{4}$can be written as \[{\text{ }}\dfrac{\pi }{2} + \dfrac{\pi }{4}\]
\[tan{\text{ }}\theta {\text{ }} + {\text{ }}tan\left[ {\dfrac{\pi }{2}{\text{ }} + {\text{ }}\left( {\dfrac{\pi }{4}{\text{ }} + {\text{ }}\theta } \right)} \right]{\text{ }} = {\text{ }}2\]
We know , \[tan{\text{ }}\left[ {{\text{ }}\dfrac{\pi }{2}{\text{ }} + {\text{ }}\theta {\text{ }}} \right]{\text{ }} = {\text{ }} - {\text{ }}cot{\text{ }}\theta \]
\[tan{\text{ }}\theta {\text{ }}-{\text{ }}cot{\text{ }}\left( {\dfrac{\pi }{4}{\text{ }} + {\text{ }}\theta } \right){\text{ }} = {\text{ }}2\]———(1)
Using the formula of \[cot{\text{ }}\left( {x{\text{ }} + {\text{ }}y} \right){\text{ }} = {\text{ }}\dfrac{{\left( {cot{\text{ }}x{\text{ }} \times {\text{ }}cot{\text{ }}y{\text{ }} - {\text{ }}1} \right)}}{{\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cot{\text{ }}y} \right)}}\]
Applying in equation \[\left( 1 \right)\]
\[tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {cot{\text{ (}}\dfrac{\pi }{4}{\text{) }} \times {\text{ }}cot{\text{ }}\theta {\text{ }}-{\text{ }}1} \right)}}{{\left( {cot{\text{ (}}\dfrac{\pi }{4}{\text{) }} + {\text{ }}cot{\text{ }}\theta } \right){\text{ }}}}} \right]{\text{ }} = {\text{ }}2\]
As , \[cot{\text{ }}\dfrac{\pi }{4}{\text{ }} = {\text{ }}1\]
\[tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {cot{\text{ }}\theta {\text{ }}-{\text{ }}1} \right)}}{{\left( {1{\text{ }} + {\text{ }}cot{\text{ }}\theta } \right)}}{\text{ }}} \right]{\text{ }} = {\text{ }}2\]
Also, \[tan{\text{ }}\theta {\text{ }} = {\text{ }}\dfrac{1}{{cot{\text{ }}\theta }}\]
\[tan{\text{ }}\theta {\text{ }}-{\text{ }}\left[ {{\text{ }}\dfrac{{\left( {1{\text{ }}-{\text{ }}tan{\text{ }}\theta } \right)}}{{\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right)}}{\text{ }}} \right]{\text{ }} = {\text{ }}2\]
Simplifying the equation , we get
\[tan{\text{ }}\theta {\text{ }}\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right){\text{ }}-{\text{ }}\left( {1{\text{ }}-{\text{ }}tan{\text{ }}\theta } \right){\text{ }} = {\text{ }}2{\text{ }}\left( {1{\text{ }} + {\text{ }}tan{\text{ }}\theta } \right)\]
On further solving
$tan\theta + ta{n^2}\theta - 1 + tan\theta - 2 - 2tan\theta = 0$
$ta{n^2}\theta = 3$
Taking square root , we get
\[tan{\text{ }}\theta {\text{ }} = {\text{ }} \pm \surd 3\]
Also , we know value of \[tan{\text{ }}\dfrac{\pi }{3}{\text{ }} = {\text{ }} \pm \surd 3\]
\[tan{\text{ }}\theta {\text{ }} = {\text{ }} \pm {\text{ }}tan{\text{ }}\dfrac{\pi }{3}\]
As the general value of \[tan{\text{ }}\theta \]lies between \[\left( {\dfrac{{ - \pi }}{2},{\text{ }}\dfrac{\pi }{2}} \right)\]
General equation of \[tan{\text{ }}\theta \]:
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan{\text{ }}\alpha \], then\[\;\theta {\text{ }} = {\text{ }}n\pi {\text{ }} + {\text{ }}\alpha \], where \[n \in Z\]
\[\theta {\text{ }} = {\text{ }}n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3},{\text{ }}n \in Z\]
hence, the general value of \[\theta {\text{ }} = {\text{ }}n\pi {\text{ }} \pm {\text{ }}\dfrac{\pi }{3}{\text{ }},{\text{ }}n \in Z\]
Thus the correct option is \[\left( 2 \right)\]
So, the correct answer is “Option B”.

Note: Equations involving trigonometric functions of a variable are called trigonometric equations . The solutions of a trigonometric equation for \[0 \leqslant {\text{ }}x{\text{ }} < {\text{ }}2\pi \]( $x$ is the angle of the trigonometric function ) are called principle solutions . The expressions involving integers \[{\text{' }}n{\text{ '}}\]which give all solutions of a trigonometric equation are called general solutions .
Various general formulas of trigonometric functions :
\[sin{\text{ }}\theta {\text{ }} = {\text{ }}sin{\text{ }}\alpha \], then$\theta = n\pi {\text{ }} \pm {( - 1)^n}\alpha $, where \[n \in Z\]
\[cos{\text{ }}\theta {\text{ }} = {\text{ }}cos{\text{ }}\alpha \], then\[\theta {\text{ }} = {\text{ }}2n\pi {\text{ }} \pm {\text{ }}\alpha \], where \[n \in Z\]
\[tan{\text{ }}\theta {\text{ }} = {\text{ }}tan{\text{ }}\alpha \], then\[\theta {\text{ }} = {\text{ }}n\pi {\text{ }} + {\text{ }}\alpha \], where \[n \in Z\]