Answer
Verified
447.3k+ views
Hint: Here we will first let the monthly sales to be \[x\] and the form a linear equation with the help of given data and solve for \[x\] to get the desired value of monthly sales.
A linear equation in one variable is an equation in which the highest power of the variable is one and has one variable only.
Complete step by step solution:
Let the monthly sales be \[x\].
Since it is given that a monthly salary of $S$ is the sum of \[\$500\] plus $5\%$ of monthly sales.
Therefore, the monthly salary $S$ is given by:-
\[ {\text{S}} = 500 + 5\% {\text{ of x}} \]
$\Rightarrow {\text{S = 500}} + \dfrac{5}{{100}}x $
On simplification,
$\Rightarrow {\text{S = 500}} + \dfrac{x}{{20}}..............\left( 1 \right) $
Since it is given that the monthly salary should be \[\$1500\]
Therefore,
\[\Rightarrow S = \$ 1500\]
Substituting the value of S in equation (1) we get:-
\[\Rightarrow {\text{S = 500}} + \dfrac{x}{{20}} \]
$\Rightarrow 1500 = 500 + \dfrac{x}{{20}}$
On simplification of the above values,
$\Rightarrow 1500 - 500 = \dfrac{x}{{20}}$
$\Rightarrow \dfrac{x}{{20}} = 1000 $
On further simplification,
$\Rightarrow x = 1000 \times 20 $
$\Rightarrow x = 20,000 $
$\therefore$ The monthly sales should be $20000.
Note:
A student might make mistake in forming the linear equation.
So one should first understand the given information first and then make the equation using the following statement:-
Total salary = fixed salary + 5% of monthly sales.
A linear equation in one variable is an equation in which the highest power of the variable is one and has one variable only.
Complete step by step solution:
Let the monthly sales be \[x\].
Since it is given that a monthly salary of $S$ is the sum of \[\$500\] plus $5\%$ of monthly sales.
Therefore, the monthly salary $S$ is given by:-
\[ {\text{S}} = 500 + 5\% {\text{ of x}} \]
$\Rightarrow {\text{S = 500}} + \dfrac{5}{{100}}x $
On simplification,
$\Rightarrow {\text{S = 500}} + \dfrac{x}{{20}}..............\left( 1 \right) $
Since it is given that the monthly salary should be \[\$1500\]
Therefore,
\[\Rightarrow S = \$ 1500\]
Substituting the value of S in equation (1) we get:-
\[\Rightarrow {\text{S = 500}} + \dfrac{x}{{20}} \]
$\Rightarrow 1500 = 500 + \dfrac{x}{{20}}$
On simplification of the above values,
$\Rightarrow 1500 - 500 = \dfrac{x}{{20}}$
$\Rightarrow \dfrac{x}{{20}} = 1000 $
On further simplification,
$\Rightarrow x = 1000 \times 20 $
$\Rightarrow x = 20,000 $
$\therefore$ The monthly sales should be $20000.
Note:
A student might make mistake in forming the linear equation.
So one should first understand the given information first and then make the equation using the following statement:-
Total salary = fixed salary + 5% of monthly sales.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE