
The moment of inertia of a uniform circular disc is minimum about an axis perpendicular to the disc and passing through the point
$
(1)\;\,{\text{A}} \\
{\text{(2) C}} \\
{\text{(3) D}} \\
{\text{(4) B}} \\
$
Answer
579.9k+ views
Hint: The moment of inertia of a uniform circular disc about an axis passing through its centre and perpendicular to it can be given by - $I = M{R^2}$ where “I” is the moment of inertia, M is the mass and R is the distance from the axis of the motion.
Complete step by step answer:
The moment of inertia of the uniform circular disc can be given by –
$I = M{R^2}$
By using the theorem of parallel axis which states that the moment of inertia (I) of the body about an axis is parallel to the body passing through its centre is always equal to the sum of the moment of inertia of the body about the axis passing through the centre and is the product of mass (M) and the square of the distance (d) between the two axes.
$I = M{R^2} + M{d^2}$
From the above equation as the distance of the point from the centre increases there will be an increase in its moment of inertia.
The point more close to the centre of the disc decreases the moment of inertia.
From the given diagram, the minimum moment of inertia is at point B.
So, the correct answer is “Option 4”.
Note:
The moment of inertia is the property of the body by its desirable quality of its mass and state of motion whether it is at rest or in motion. We experience the property of inertia almost every day. For example- The rolling ball comes to halt or is stopped by an external force.
Complete step by step answer:
The moment of inertia of the uniform circular disc can be given by –
$I = M{R^2}$
By using the theorem of parallel axis which states that the moment of inertia (I) of the body about an axis is parallel to the body passing through its centre is always equal to the sum of the moment of inertia of the body about the axis passing through the centre and is the product of mass (M) and the square of the distance (d) between the two axes.
$I = M{R^2} + M{d^2}$
From the above equation as the distance of the point from the centre increases there will be an increase in its moment of inertia.
The point more close to the centre of the disc decreases the moment of inertia.
From the given diagram, the minimum moment of inertia is at point B.
So, the correct answer is “Option 4”.
Note:
The moment of inertia is the property of the body by its desirable quality of its mass and state of motion whether it is at rest or in motion. We experience the property of inertia almost every day. For example- The rolling ball comes to halt or is stopped by an external force.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

