
The modulus of \[\dfrac{{{\text{1 - i}}}}{{{\text{3 + i}}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
A.\[\sqrt {\text{5}} \] unit.
B.\[\dfrac{{\sqrt {{\text{11}}} }}{{\text{5}}}\]unit
C.\[\dfrac{{\sqrt {\text{5}} }}{{\text{5}}}\] unit
D.\[\dfrac{{\sqrt {{\text{12}}} }}{{\text{5}}}\]unit
Answer
594k+ views
Hint: First, convert the given question in the form of \[z = x + iy\] by rationalizing the denominator. And then find
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)} \]
Rationalizing term is \[{\text{x + iy}}\] will be \[{\text{x - iy}}\]
Complete step-by-step answer:
Rationalizing the denominator in the given question,
\[{\text{ = }}\dfrac{{\left( {{\text{1 - i}}} \right)}}{{\left( {{\text{3 + i}}} \right)}}{{ \times }}\dfrac{{\left( {{\text{3 - i}}} \right)}}{{\left( {{\text{3 - i}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{\left( {{\text{1 - i}}} \right)\left( {{\text{3 - i}}} \right)}}{{\left( {{\text{3 + i}}} \right)\left( {{\text{3 - i}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
Now, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}$
\[{\text{ = }}\dfrac{{\left( {{{\text{i}}^{\text{2}}}{\text{ - 3i - i + 3}}} \right)}}{{{{\text{3}}^{\text{2}}}{\text{ - }}{{\text{i}}^{\text{2}}}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{ - 1 - 3i - i + 3}}}}{{{\text{9 - }}\left( {{\text{ - 1}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{2 - 4i}}}}{{{\text{10}}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{1 - 2i}}}}{{\text{5}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{1 + 2i}}}}{{\text{5}}}\]
Hence, \[{\text{z = }}\dfrac{{{\text{1 + 2i}}}}{{\text{5}}}\]
Compare the above, with \[{\text{z = x + iy}}\]
${\text{x = }}\dfrac{{\text{1}}}{{\text{5}}}$ and ${\text{y = }}\dfrac{{\text{2}}}{{\text{5}}}$
Now, using \[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)} \]
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\left( {\dfrac{{\text{1}}}{{\text{5}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\dfrac{{\text{2}}}{{\text{5}}}} \right)}^{\text{2}}}} \right)} \]
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {\dfrac{{\text{1}}}{{{\text{25}}}}{\text{ + }}\dfrac{{\text{4}}}{{{\text{25}}}}} \right)} {\text{ = }}\sqrt {\dfrac{{\text{5}}}{{{\text{25}}}}} \]
\[\left| {\text{z}} \right|{\text{ = }}\dfrac{{\sqrt {\text{5}} }}{{\text{5}}}\]
Hence option (c) is the correct answer.
Note: Remember the general notation of complex numbers and remember the formula to calculate the modulus of complex numbers. Also convert the denominator into rational and real integral form in order to convert it into standard formulas.
A rational number is a number that can be expressed as the ratio of two integers. ... However, one third can be expressed as 1 divided by 3, and since 1 and 3 are both integers, one third is a rational number. Likewise, any integer can be expressed as the ratio of two integers, thus all integers are rational.
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)} \]
Rationalizing term is \[{\text{x + iy}}\] will be \[{\text{x - iy}}\]
Complete step-by-step answer:
Rationalizing the denominator in the given question,
\[{\text{ = }}\dfrac{{\left( {{\text{1 - i}}} \right)}}{{\left( {{\text{3 + i}}} \right)}}{{ \times }}\dfrac{{\left( {{\text{3 - i}}} \right)}}{{\left( {{\text{3 - i}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{\left( {{\text{1 - i}}} \right)\left( {{\text{3 - i}}} \right)}}{{\left( {{\text{3 + i}}} \right)\left( {{\text{3 - i}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
Now, $\left( {{\text{a + b}}} \right)\left( {{\text{a - b}}} \right){\text{ = }}{{\text{a}}^{\text{2}}}{\text{ - }}{{\text{b}}^{\text{2}}}$
\[{\text{ = }}\dfrac{{\left( {{{\text{i}}^{\text{2}}}{\text{ - 3i - i + 3}}} \right)}}{{{{\text{3}}^{\text{2}}}{\text{ - }}{{\text{i}}^{\text{2}}}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{ - 1 - 3i - i + 3}}}}{{{\text{9 - }}\left( {{\text{ - 1}}} \right)}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{2 - 4i}}}}{{{\text{10}}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{1 - 2i}}}}{{\text{5}}}{\text{ + }}\dfrac{{{\text{4i}}}}{{\text{5}}}\]
\[{\text{ = }}\dfrac{{{\text{1 + 2i}}}}{{\text{5}}}\]
Hence, \[{\text{z = }}\dfrac{{{\text{1 + 2i}}}}{{\text{5}}}\]
Compare the above, with \[{\text{z = x + iy}}\]
${\text{x = }}\dfrac{{\text{1}}}{{\text{5}}}$ and ${\text{y = }}\dfrac{{\text{2}}}{{\text{5}}}$
Now, using \[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)} \]
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {{{\left( {\dfrac{{\text{1}}}{{\text{5}}}} \right)}^{\text{2}}}{\text{ + }}{{\left( {\dfrac{{\text{2}}}{{\text{5}}}} \right)}^{\text{2}}}} \right)} \]
\[\left| {\text{z}} \right|{\text{ = }}\sqrt {\left( {\dfrac{{\text{1}}}{{{\text{25}}}}{\text{ + }}\dfrac{{\text{4}}}{{{\text{25}}}}} \right)} {\text{ = }}\sqrt {\dfrac{{\text{5}}}{{{\text{25}}}}} \]
\[\left| {\text{z}} \right|{\text{ = }}\dfrac{{\sqrt {\text{5}} }}{{\text{5}}}\]
Hence option (c) is the correct answer.
Note: Remember the general notation of complex numbers and remember the formula to calculate the modulus of complex numbers. Also convert the denominator into rational and real integral form in order to convert it into standard formulas.
A rational number is a number that can be expressed as the ratio of two integers. ... However, one third can be expressed as 1 divided by 3, and since 1 and 3 are both integers, one third is a rational number. Likewise, any integer can be expressed as the ratio of two integers, thus all integers are rational.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

