
The minimum value of the sum of real numbers ${a^{ - 5}}, {a^{ - 4}}, 3{a^{ - 3}}, 1, {a^8}, {a^{10}}$ with $a > 0$ is
A) 6
B) 7
C) 8
D) 9
Answer
591.3k+ views
Hint: The inequality of arithmetic and geometric means states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list i.e.,$AM \geqslant GM$.
For two positive real numbers $x$ and $y$, AM is $\dfrac{{x + y}}{2}$ and GM is ${\left( {xy} \right)^{\dfrac{1}{2}}}$.
Complete step-by-step answer:
Given real numbers are ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$ with $a > 0$ .It means ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$$ > 0$
The inequality of arithmetic and geometric means states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list i.e.,$AM \geqslant GM$.
AM of the given numbers= $\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$
GM of given numbers= ${\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}$
Now, putting the value in the relation:$AM \geqslant GM$
$\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $${\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}$
$ \Rightarrow $$\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $${\left( 1 \right)^{\dfrac{1}{8}}}$
$ \Rightarrow $ $\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $$1$
$ \Rightarrow \dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}} \geqslant 8$
$ \Rightarrow {a^{ - 5}} + {a^{ - 4}} + 3{a^{ - 3}} + 1 + {a^8} + {a^{10}} \geqslant 8$
Thus, the minimum value of the sum of real numbers ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$ with $a > 0$ is 8.
Hence, option (C) is the correct answer.
Note: In this question, we break the $3{a^{ - 3}}$ into ${a^{ - 3}},{a^{ - 3}},{a^{ - 3}}$ so that their multiplication gets easier and desired result can be obtained without any difficulty.
${a^{-m}}=\dfrac{1}{{a^m}}$
For two positive real numbers $x$ and $y$, AM is $\dfrac{{x + y}}{2}$ and GM is ${\left( {xy} \right)^{\dfrac{1}{2}}}$.
Complete step-by-step answer:
Given real numbers are ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$ with $a > 0$ .It means ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$$ > 0$
The inequality of arithmetic and geometric means states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list i.e.,$AM \geqslant GM$.
AM of the given numbers= $\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$
GM of given numbers= ${\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}$
Now, putting the value in the relation:$AM \geqslant GM$
$\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $${\left( {\dfrac{1}{{{a^5}}} \times \dfrac{1}{{{a^4}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times \dfrac{1}{{{a^3}}} \times 1 \times {a^8} \times {a^{10}}} \right)^{\dfrac{1}{8}}}$
$ \Rightarrow $$\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $${\left( 1 \right)^{\dfrac{1}{8}}}$
$ \Rightarrow $ $\dfrac{{\dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}}}}{8}$$ \geqslant $$1$
$ \Rightarrow \dfrac{1}{{{a^5}}} + \dfrac{1}{{{a^4}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + \dfrac{1}{{{a^3}}} + 1 + {a^8} + {a^{10}} \geqslant 8$
$ \Rightarrow {a^{ - 5}} + {a^{ - 4}} + 3{a^{ - 3}} + 1 + {a^8} + {a^{10}} \geqslant 8$
Thus, the minimum value of the sum of real numbers ${a^{ - 5}},{a^{ - 4}},3{a^{ - 3}},1,{a^8},{a^{10}}$ with $a > 0$ is 8.
Hence, option (C) is the correct answer.
Note: In this question, we break the $3{a^{ - 3}}$ into ${a^{ - 3}},{a^{ - 3}},{a^{ - 3}}$ so that their multiplication gets easier and desired result can be obtained without any difficulty.
${a^{-m}}=\dfrac{1}{{a^m}}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

