
The minimum value of the expression cos2x+cosx for real values of x is:
[a] $\dfrac{-9}{8}$
[b] 0
[c] -2
[d] None of these
Answer
597.3k+ views
Hint: Checking for critical points in the intervale $[0,2\pi )$ is sufficient due to periodicity of cos x and cos2x. Differentiate once w.r.t x and put derivative equal to 0 to find the critical points. Use the first derivative test to determine whether a critical point is local maxima or minima.
Complete step-by-step answer:
First derivative test: If f(x) is a continuous and differentiable function and f’(a) = 0, then
[i] If $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'\left( x \right)>0$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f'\left( x \right)<0$, then x = a is a point of local maxima
[ii] If $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'\left( x \right)<0$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f'\left( x \right)>0$, then x = a is a point of local minima
Let f(x) = cos2x+cosx
Differentiating once we get
f’(x) = -2sin2x-sinx = 0
i.e. 2sin2x+sinx = 0
We know that sin2x = 2sinx cosx
Using the above formula, we get
4sinxcosx+sinx = 0
Taking sinx common, we get
sinx(4cosx+1)=0
i.e sinx = 0 or 4cosx + 1 = 0
if sinx = 0 then $x=0,\pi ${Because sinx = 0 when $x=n\pi $ }
if 4cosx +1 = 0 then
$\begin{align}
& \cos x=\dfrac{-1}{4} \\
& \Rightarrow x=\pi +\arccos \left( \dfrac{1}{4} \right),\pi -\arccos \left( \dfrac{1}{4} \right) \\
\end{align}$
In finding the above roots, we have used the property $\cos \left( \arccos x \right)=x$ and $\cos \left( \pi -\theta \right)=\cos \left( \pi +\theta \right)=-\cos \theta $.
The graph of f’(x) is shown above.
Around point x = 0(Point A in the graph of f’(x)): f’(x) changes sign from +ve to -ve as we move left of 0 to right of 0. Hence, from first derivative test, x = 0 is a point of local maxima
Around point $x=\pi -\arccos \left( \dfrac{1}{4} \right)$(Point B in the graph of f’(x)): f’(x) changes sign from -ve to +ve as we move left of $\pi -\arccos \left( \dfrac{1}{4} \right)$ to the right of $\pi -\arccos \left( \dfrac{1}{4} \right)$. Hence, from the first derivative test, $x=\pi -\arccos \left( \dfrac{1}{4} \right)$ is a point of local minima.
Around point $x=\pi $ (Point C in the graph of f’(x)): f’(x) changes sign from +ve to -ve as we move left of $\pi $ to the right of $\pi $.
Around point $x=\pi +\arccos \left( \dfrac{1}{4} \right)$ (Point D in the graph of f(x)): f’(x) changes sign from -ve to +ve as we move left of $\pi +\arccos \left( \dfrac{1}{4} \right)$ to the right of $\pi +\arccos \left( \dfrac{1}{4} \right)$. Hence $x=\pi +\arccos \left( \dfrac{1}{4} \right)$ is a point of local minima.
Now
$\begin{align}
& f\left( \pi -\arccos \left( \dfrac{1}{4} \right) \right)=\cos \left( 2\pi -2\arccos \left( \dfrac{1}{4} \right) \right)+\cos \left( \pi -\arccos \left( \dfrac{1}{4} \right) \right) \\
& =\cos \left( 2\arccos \left( \dfrac{1}{4} \right) \right)-\cos \left( \arccos \left( \dfrac{1}{4} \right) \right) \\
& =2{{\cos }^{2}}\left( \arccos \left( \dfrac{1}{4} \right) \right)-1-\dfrac{1}{4} \\
& =\dfrac{2}{16}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
and
$\begin{align}
& f\left( \pi +\arccos \left( \dfrac{1}{4} \right) \right)=\cos \left( 2\pi +2\arccos \left( \dfrac{1}{4} \right) \right)+\cos \left( \pi +\arccos \left( \dfrac{1}{4} \right) \right) \\
& =\cos \left( 2\arccos \left( \dfrac{1}{4} \right) \right)-\cos \left( \arccos \left( \dfrac{1}{4} \right) \right) \\
& =2{{\cos }^{2}}\left( \arccos \left( \dfrac{1}{4} \right) \right)-1-\dfrac{1}{4} \\
& =\dfrac{2}{16}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
Hence the minimum value of the trigonometric expression cos2x+cosx is $\dfrac{-9}{8}$.
Hence option [a] is correct.
Note: Alternative solution:
We know $\cos 2x=2{{\cos }^{2}}x-1$
Hence $\cos 2x+\cos x=2{{\cos }^{2}}x-1+\cos x$
Put $t=\cos x$ we get\[f\left( t \right)=2{{t}^{2}}+t-1,-1\le t\le 1\]
We know the quadratic expression $a{{x}^{2}}+bx+c$ where a>0 attains minima when $x=\dfrac{-b}{2a}$
Since $\dfrac{-b}{2a}=\dfrac{-1}{2\times 2}=\dfrac{-1}{4}$ is in the domain of t.
We have the minimum value of f(x) = minimum value of f(t)
$\begin{align}
& =2{{\left( \dfrac{-1}{4} \right)}^{2}}+\dfrac{-1}{4}-1 \\
& =\dfrac{1}{8}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
which is the same as obtained above.
Complete step-by-step answer:
First derivative test: If f(x) is a continuous and differentiable function and f’(a) = 0, then
[i] If $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'\left( x \right)>0$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f'\left( x \right)<0$, then x = a is a point of local maxima
[ii] If $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'\left( x \right)<0$ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f'\left( x \right)>0$, then x = a is a point of local minima
Let f(x) = cos2x+cosx
Differentiating once we get
f’(x) = -2sin2x-sinx = 0
i.e. 2sin2x+sinx = 0
We know that sin2x = 2sinx cosx
Using the above formula, we get
4sinxcosx+sinx = 0
Taking sinx common, we get
sinx(4cosx+1)=0
i.e sinx = 0 or 4cosx + 1 = 0
if sinx = 0 then $x=0,\pi ${Because sinx = 0 when $x=n\pi $ }
if 4cosx +1 = 0 then
$\begin{align}
& \cos x=\dfrac{-1}{4} \\
& \Rightarrow x=\pi +\arccos \left( \dfrac{1}{4} \right),\pi -\arccos \left( \dfrac{1}{4} \right) \\
\end{align}$
In finding the above roots, we have used the property $\cos \left( \arccos x \right)=x$ and $\cos \left( \pi -\theta \right)=\cos \left( \pi +\theta \right)=-\cos \theta $.
The graph of f’(x) is shown above.
Around point x = 0(Point A in the graph of f’(x)): f’(x) changes sign from +ve to -ve as we move left of 0 to right of 0. Hence, from first derivative test, x = 0 is a point of local maxima
Around point $x=\pi -\arccos \left( \dfrac{1}{4} \right)$(Point B in the graph of f’(x)): f’(x) changes sign from -ve to +ve as we move left of $\pi -\arccos \left( \dfrac{1}{4} \right)$ to the right of $\pi -\arccos \left( \dfrac{1}{4} \right)$. Hence, from the first derivative test, $x=\pi -\arccos \left( \dfrac{1}{4} \right)$ is a point of local minima.
Around point $x=\pi $ (Point C in the graph of f’(x)): f’(x) changes sign from +ve to -ve as we move left of $\pi $ to the right of $\pi $.
Around point $x=\pi +\arccos \left( \dfrac{1}{4} \right)$ (Point D in the graph of f(x)): f’(x) changes sign from -ve to +ve as we move left of $\pi +\arccos \left( \dfrac{1}{4} \right)$ to the right of $\pi +\arccos \left( \dfrac{1}{4} \right)$. Hence $x=\pi +\arccos \left( \dfrac{1}{4} \right)$ is a point of local minima.
Now
$\begin{align}
& f\left( \pi -\arccos \left( \dfrac{1}{4} \right) \right)=\cos \left( 2\pi -2\arccos \left( \dfrac{1}{4} \right) \right)+\cos \left( \pi -\arccos \left( \dfrac{1}{4} \right) \right) \\
& =\cos \left( 2\arccos \left( \dfrac{1}{4} \right) \right)-\cos \left( \arccos \left( \dfrac{1}{4} \right) \right) \\
& =2{{\cos }^{2}}\left( \arccos \left( \dfrac{1}{4} \right) \right)-1-\dfrac{1}{4} \\
& =\dfrac{2}{16}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
and
$\begin{align}
& f\left( \pi +\arccos \left( \dfrac{1}{4} \right) \right)=\cos \left( 2\pi +2\arccos \left( \dfrac{1}{4} \right) \right)+\cos \left( \pi +\arccos \left( \dfrac{1}{4} \right) \right) \\
& =\cos \left( 2\arccos \left( \dfrac{1}{4} \right) \right)-\cos \left( \arccos \left( \dfrac{1}{4} \right) \right) \\
& =2{{\cos }^{2}}\left( \arccos \left( \dfrac{1}{4} \right) \right)-1-\dfrac{1}{4} \\
& =\dfrac{2}{16}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
Hence the minimum value of the trigonometric expression cos2x+cosx is $\dfrac{-9}{8}$.
Hence option [a] is correct.
Note: Alternative solution:
We know $\cos 2x=2{{\cos }^{2}}x-1$
Hence $\cos 2x+\cos x=2{{\cos }^{2}}x-1+\cos x$
Put $t=\cos x$ we get\[f\left( t \right)=2{{t}^{2}}+t-1,-1\le t\le 1\]
We know the quadratic expression $a{{x}^{2}}+bx+c$ where a>0 attains minima when $x=\dfrac{-b}{2a}$
Since $\dfrac{-b}{2a}=\dfrac{-1}{2\times 2}=\dfrac{-1}{4}$ is in the domain of t.
We have the minimum value of f(x) = minimum value of f(t)
$\begin{align}
& =2{{\left( \dfrac{-1}{4} \right)}^{2}}+\dfrac{-1}{4}-1 \\
& =\dfrac{1}{8}-\dfrac{5}{4} \\
& =\dfrac{-9}{8} \\
\end{align}$
which is the same as obtained above.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

