
The minimum value of $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $ is
Answer
558.9k+ views
Hint: In the given trigonometric expression we have three cube powered cosine functions. Cube powered cosine functions are found in the formula of $ \cos 3\theta $ . So first write the formula of $ \cos 3\theta $ and write all the cube powered cosines in terms of $ \cos 3\theta $ . After this, you will get an idea on how to proceed further. Solve the further referring to the below mentioned formulas.
Formulas used:
1. $ \cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
2. $ \cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta $
3. $ \cos \left( { - \theta } \right) = \cos \theta $
4. $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
5. $ 2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) $
Complete step by step solution:
We are given to the minimum value of $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $
We know that the value $ \cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
This means $ \cos 3x = 4{\cos ^3}x - 3\cos x $
Therefore, $ {\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right) $
On replacing $ {\cos ^3}x $ in $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $ with its above obtained formula, we get
$ \Rightarrow \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right) + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right)} \right] + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } - x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos \left( {{{360}^ \circ } + 3x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{360}^ \circ } - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
We know that $ \cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta $ , so $ \cos \left( {{{360}^ \circ } + 3x} \right) = \cos 3x $ and $ \cos \left( {{{360}^ \circ } - 3x} \right) = \cos \left( { - 3x} \right) $
Substituting the above value we get
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( { - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
We know that $ \cos \left( { - \theta } \right) = \cos \theta $ , so $ \cos \left( { - 3x} \right) = \cos 3x $
This gives,
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos 3x + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{1}{4}\left[ {3\cos 3x + 3\cos x + 3\cos \left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
Taking out 3 common, we get
$ \Rightarrow \dfrac{{1 \times 3}}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{3}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right] $
As we can see $ \cos 3x + \cos x $ is in the form of $ \cos A + \cos B $ , where A is 3x and B is x.
We know that $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
Therefore, $ \cos 3x + \cos x = 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 2\cos 2x\cos x $
In $ \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) $ , A is $ \left( {{{120}^ \circ } + x} \right) $ and B is $ \left( {{{120}^ \circ } - x} \right) $
$ \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) = 2\cos \left( {\dfrac{{{{120}^ \circ } + x + {{120}^ \circ } - x}}{2}} \right)\cos \left( {\dfrac{{{{120}^ \circ } + x - \left( {{{120}^ \circ } - x} \right)}}{2}} \right) = 2\cos {120^ \circ }\cos x $
Substituting the obtained values, we get
$ \Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\cos {{120}^ \circ }\cos x} \right) $
$ \cos {120^ \circ } = - \dfrac{1}{2} $
$ \Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\left( {\dfrac{{ - 1}}{2}} \right)\cos x} \right) = \dfrac{3}{4}\left( {2\cos 2x\cos x - \cos x} \right) $
We know that $ 2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) $
This gives us $ 2\cos 2x\cos x = \cos \left( {2x + x} \right) + \cos \left( {2x - x} \right) = \cos 3x + \cos x $
$ \Rightarrow \dfrac{3}{4}\left( {\cos 3x + \cos x - \cos x} \right) = \dfrac{3}{4}\left( {\cos 3x} \right) $
Cosine function ranges from -1 to +1. So the minimum value of $ \cos \theta $ is -1, this means the minimum value of $ \cos 3x $ is -1.
Therefore, the minimum value of $ \dfrac{3}{4}\left( {\cos 3x} \right) $ is $ \Rightarrow \dfrac{3}{4}\left( { - 1} \right) = \dfrac{{ - 3}}{4} $
The minimum value of $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $ is $ \dfrac{{ - 3}}{4} $
So, the correct answer is “ $ \dfrac{{ - 3}}{4} $”.
Note: Sine, Cosine and tangent functions are periodic functions; which means their values get repeated after a certain interval. Sine values and cosine values repeat after every 360 degrees (2π radians) whereas tangent values get repeated after every 180 degrees (π radians). Be careful while writing the formulas. A little replacement of sine with cosine will change the complete answer. So please be careful.
Formulas used:
1. $ \cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
2. $ \cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta $
3. $ \cos \left( { - \theta } \right) = \cos \theta $
4. $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
5. $ 2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) $
Complete step by step solution:
We are given to the minimum value of $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $
We know that the value $ \cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
This means $ \cos 3x = 4{\cos ^3}x - 3\cos x $
Therefore, $ {\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right) $
On replacing $ {\cos ^3}x $ in $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $ with its above obtained formula, we get
$ \Rightarrow \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right) + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right)} \right] + \dfrac{1}{4}\left[ {\cos 3\left( {{{120}^ \circ } - x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos \left( {{{360}^ \circ } + 3x} \right) + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{360}^ \circ } - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
We know that $ \cos \left( {{{360}^ \circ } + \theta } \right) = \cos \theta $ , so $ \cos \left( {{{360}^ \circ } + 3x} \right) = \cos 3x $ and $ \cos \left( {{{360}^ \circ } - 3x} \right) = \cos \left( { - 3x} \right) $
Substituting the above value we get
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos \left( { - 3x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
We know that $ \cos \left( { - \theta } \right) = \cos \theta $ , so $ \cos \left( { - 3x} \right) = \cos 3x $
This gives,
$ \Rightarrow \dfrac{1}{4}\left[ {\cos 3x + 3\cos x + \cos 3x + 3\cos \left( {{{120}^ \circ } + x} \right) + \cos 3x + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{1}{4}\left[ {3\cos 3x + 3\cos x + 3\cos \left( {{{120}^ \circ } + x} \right) + 3\cos \left( {{{120}^ \circ } - x} \right)} \right] $
Taking out 3 common, we get
$ \Rightarrow \dfrac{{1 \times 3}}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right] $
$ \Rightarrow \dfrac{3}{4}\left[ {\cos 3x + \cos x + \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right)} \right] $
As we can see $ \cos 3x + \cos x $ is in the form of $ \cos A + \cos B $ , where A is 3x and B is x.
We know that $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
Therefore, $ \cos 3x + \cos x = 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 2\cos 2x\cos x $
In $ \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) $ , A is $ \left( {{{120}^ \circ } + x} \right) $ and B is $ \left( {{{120}^ \circ } - x} \right) $
$ \cos \left( {{{120}^ \circ } + x} \right) + \cos \left( {{{120}^ \circ } - x} \right) = 2\cos \left( {\dfrac{{{{120}^ \circ } + x + {{120}^ \circ } - x}}{2}} \right)\cos \left( {\dfrac{{{{120}^ \circ } + x - \left( {{{120}^ \circ } - x} \right)}}{2}} \right) = 2\cos {120^ \circ }\cos x $
Substituting the obtained values, we get
$ \Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\cos {{120}^ \circ }\cos x} \right) $
$ \cos {120^ \circ } = - \dfrac{1}{2} $
$ \Rightarrow \dfrac{3}{4}\left( {2\cos 2x\cos x + 2\left( {\dfrac{{ - 1}}{2}} \right)\cos x} \right) = \dfrac{3}{4}\left( {2\cos 2x\cos x - \cos x} \right) $
We know that $ 2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right) $
This gives us $ 2\cos 2x\cos x = \cos \left( {2x + x} \right) + \cos \left( {2x - x} \right) = \cos 3x + \cos x $
$ \Rightarrow \dfrac{3}{4}\left( {\cos 3x + \cos x - \cos x} \right) = \dfrac{3}{4}\left( {\cos 3x} \right) $
Cosine function ranges from -1 to +1. So the minimum value of $ \cos \theta $ is -1, this means the minimum value of $ \cos 3x $ is -1.
Therefore, the minimum value of $ \dfrac{3}{4}\left( {\cos 3x} \right) $ is $ \Rightarrow \dfrac{3}{4}\left( { - 1} \right) = \dfrac{{ - 3}}{4} $
The minimum value of $ {\cos ^3}x + {\cos ^3}\left( {{{120}^ \circ } + x} \right) + {\cos ^3}\left( {{{120}^ \circ } - x} \right) $ is $ \dfrac{{ - 3}}{4} $
So, the correct answer is “ $ \dfrac{{ - 3}}{4} $”.
Note: Sine, Cosine and tangent functions are periodic functions; which means their values get repeated after a certain interval. Sine values and cosine values repeat after every 360 degrees (2π radians) whereas tangent values get repeated after every 180 degrees (π radians). Be careful while writing the formulas. A little replacement of sine with cosine will change the complete answer. So please be careful.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

