
The minimum value of $64\sec \theta +27\operatorname{cosec}\theta $ when $\theta $ lies in $\left( 0,\dfrac{\pi }{2} \right)$ is \[\]
A.125\[\]
B.625\[\]
C.25\[\]
D. 1025\[\]
Answer
556.8k+ views
Hint: We find the critical points $\theta ={{\theta }_{c}}$by equating the derivative of the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ to zero in the form of $\tan \theta $. We check whether the function is minimum by checking the double derivative at $\theta ={{\theta }_{c}}$ is greater than zero or not. We use Pythagorean trigonometric identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta ,\cos e{{c}^{2}}\theta =1+{{\cot }^{2}}\theta $ to get the minimum value. \[\]
Complete step-by-step answer:
We are given a trigonometric function in $\theta $ from the question as
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta .......\left( 1 \right)\]
We are also given that $\theta $ lies in the interval $\left( 0,\dfrac{\pi }{2} \right)$ which means in the first quadrant. Let us differentiate the given function with respect to $\theta $ in order to find the critical points. We have
\[\dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }\left( 64\sec \theta +27\operatorname{cosec}\theta \right)\]
We use rule of sum for differentiation and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }64\sec \theta +\dfrac{d}{d\theta }27\operatorname{cosec}\theta \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\dfrac{d}{d\theta }\sec \theta +27\dfrac{d}{d\theta }\operatorname{cosec}\theta \\
\end{align}\]
We use the standard differentiation formula for $\sec \theta $ and $\operatorname{cosec}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta +27\left( -\operatorname{cosec}\theta \cot \theta \right) \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta ......\left( 2 \right) \\
\end{align}\]
We equate the above differentiate to zero to have;
\[\Rightarrow 64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta =0\]
We convert all the above trigonometric functions into sin and cosine to have;
\[\begin{align}
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }-27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta }=0 \\
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }=27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta } \\
\end{align}\]
We cross multiply to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{27}{64} \\
& \Rightarrow {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}} \\
\end{align}\]
We put back $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ to have;
\[\Rightarrow {{\left( \tan \theta \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
We take cube root both side of the above equation to have;
\[\Rightarrow \tan \theta =\dfrac{3}{4}\]
The values of $\theta $ for which the above equation is satisfied are critical points. We know that $\tan \theta $ is a strictly increasing function with respect to $\theta $. Since for values of critical point ${{\theta }_{c}}$ in the first quadrant $\sec \theta ,\operatorname{cosec}\theta$ are positive then the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ is not going to change sign. So we proceed to find the second derivative at $\tan {{\theta }_{c}}=\dfrac{3}{4}$. We have;
\[\begin{align}
& \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( \sec \theta \cdot {{\sec }^{2}}\theta +\tan \theta \cdot \sec \theta \tan \theta \right) \\
& -27\left( \operatorname{cosec}\theta \cdot \left( -{{\operatorname{cosec}}^{2}}\theta \right)+\operatorname{cosec}\theta \cdot \left( -\operatorname{cosec}\theta \cdot \cot \theta \right) \right) \\
& \Rightarrow \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( {{\sec }^{3}}\theta +\sec \theta {{\tan }^{2}}\theta \right)+27\left( {{\operatorname{cosec}}^{3}}\theta +{{\operatorname{cosec}}^{2}}\theta \cot \theta \right).....\left( 3 \right) \\
\end{align}\]
We need to double derivative value at the critical point $\tan {{\theta }_{c}}=\dfrac{3}{4}$.We use the Pythagorean identity of secant and tangent to have;
\[\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{3}{4} \right)}^{2}}}=\dfrac{5}{4}\]
We use the reciprocal relationship between tangent and cotangent to have;
\[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\]
We use the Pythagorean identity of cosecant and cotangent to have;
\[\operatorname{cosec}\theta =\sqrt{1+{{\cot }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{4}{3} \right)}^{2}}}=\dfrac{5}{3}\]
We put the values $\operatorname{cosec}\theta ,\cot \theta ,\sec \theta ,\tan \theta $ in the double derivative (3) to have;
\[\dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( {{\theta }_{c}} \right)=64\left( {{\left( \dfrac{5}{4} \right)}^{3}}+\dfrac{5}{4}\times {{\left( \dfrac{3}{4} \right)}^{2}} \right)+27\left( {{\left( \dfrac{5}{3} \right)}^{3}}+{{\left( \dfrac{5}{4} \right)}^{2}}\left( \dfrac{4}{3} \right) \right)>0.\]
So there is a minimum at $\tan \theta =\dfrac{3}{4}$ for the function $f\left( \theta \right)$ and the minimum value is;
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta =64\times \dfrac{5}{4}+27\times \dfrac{5}{3}=125\]
So, the correct answer is “Option A”.
Note: We see that since $\tan \theta $ is a strictly increasing function $\theta ={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ will be the only critical point in $\left( 0,\dfrac{\pi }{2} \right)$ and we can find the minimum directly without calculating the double derivative. We note that critical points are also the points where the derivative is not defined for example $\theta =\dfrac{\pi }{2}$ for the function $\tan \theta $.
Complete step-by-step answer:
We are given a trigonometric function in $\theta $ from the question as
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta .......\left( 1 \right)\]
We are also given that $\theta $ lies in the interval $\left( 0,\dfrac{\pi }{2} \right)$ which means in the first quadrant. Let us differentiate the given function with respect to $\theta $ in order to find the critical points. We have
\[\dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }\left( 64\sec \theta +27\operatorname{cosec}\theta \right)\]
We use rule of sum for differentiation and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }64\sec \theta +\dfrac{d}{d\theta }27\operatorname{cosec}\theta \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\dfrac{d}{d\theta }\sec \theta +27\dfrac{d}{d\theta }\operatorname{cosec}\theta \\
\end{align}\]
We use the standard differentiation formula for $\sec \theta $ and $\operatorname{cosec}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta +27\left( -\operatorname{cosec}\theta \cot \theta \right) \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta ......\left( 2 \right) \\
\end{align}\]
We equate the above differentiate to zero to have;
\[\Rightarrow 64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta =0\]
We convert all the above trigonometric functions into sin and cosine to have;
\[\begin{align}
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }-27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta }=0 \\
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }=27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta } \\
\end{align}\]
We cross multiply to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{27}{64} \\
& \Rightarrow {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}} \\
\end{align}\]
We put back $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ to have;
\[\Rightarrow {{\left( \tan \theta \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
We take cube root both side of the above equation to have;
\[\Rightarrow \tan \theta =\dfrac{3}{4}\]
The values of $\theta $ for which the above equation is satisfied are critical points. We know that $\tan \theta $ is a strictly increasing function with respect to $\theta $. Since for values of critical point ${{\theta }_{c}}$ in the first quadrant $\sec \theta ,\operatorname{cosec}\theta$ are positive then the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ is not going to change sign. So we proceed to find the second derivative at $\tan {{\theta }_{c}}=\dfrac{3}{4}$. We have;
\[\begin{align}
& \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( \sec \theta \cdot {{\sec }^{2}}\theta +\tan \theta \cdot \sec \theta \tan \theta \right) \\
& -27\left( \operatorname{cosec}\theta \cdot \left( -{{\operatorname{cosec}}^{2}}\theta \right)+\operatorname{cosec}\theta \cdot \left( -\operatorname{cosec}\theta \cdot \cot \theta \right) \right) \\
& \Rightarrow \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( {{\sec }^{3}}\theta +\sec \theta {{\tan }^{2}}\theta \right)+27\left( {{\operatorname{cosec}}^{3}}\theta +{{\operatorname{cosec}}^{2}}\theta \cot \theta \right).....\left( 3 \right) \\
\end{align}\]
We need to double derivative value at the critical point $\tan {{\theta }_{c}}=\dfrac{3}{4}$.We use the Pythagorean identity of secant and tangent to have;
\[\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{3}{4} \right)}^{2}}}=\dfrac{5}{4}\]
We use the reciprocal relationship between tangent and cotangent to have;
\[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\]
We use the Pythagorean identity of cosecant and cotangent to have;
\[\operatorname{cosec}\theta =\sqrt{1+{{\cot }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{4}{3} \right)}^{2}}}=\dfrac{5}{3}\]
We put the values $\operatorname{cosec}\theta ,\cot \theta ,\sec \theta ,\tan \theta $ in the double derivative (3) to have;
\[\dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( {{\theta }_{c}} \right)=64\left( {{\left( \dfrac{5}{4} \right)}^{3}}+\dfrac{5}{4}\times {{\left( \dfrac{3}{4} \right)}^{2}} \right)+27\left( {{\left( \dfrac{5}{3} \right)}^{3}}+{{\left( \dfrac{5}{4} \right)}^{2}}\left( \dfrac{4}{3} \right) \right)>0.\]
So there is a minimum at $\tan \theta =\dfrac{3}{4}$ for the function $f\left( \theta \right)$ and the minimum value is;
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta =64\times \dfrac{5}{4}+27\times \dfrac{5}{3}=125\]
So, the correct answer is “Option A”.
Note: We see that since $\tan \theta $ is a strictly increasing function $\theta ={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ will be the only critical point in $\left( 0,\dfrac{\pi }{2} \right)$ and we can find the minimum directly without calculating the double derivative. We note that critical points are also the points where the derivative is not defined for example $\theta =\dfrac{\pi }{2}$ for the function $\tan \theta $.
Recently Updated Pages
Write 165m in feet and inches class 11 maths CBSE

What is bacteriophage Explain lytic cycle of bacteriophage class 11 biology CBSE

Maximum number of hydrogen bonds formed by a water class 11 chemistry CBSE

How to convert benzoic acid to benzene class 11 chemistry CBSE

Two particles of equal mass m are projected from the class 11 physics CBSE

What is the best pH of the soil for the cultivation class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

