
The minimum value of $64\sec \theta +27\operatorname{cosec}\theta $ when $\theta $ lies in $\left( 0,\dfrac{\pi }{2} \right)$ is \[\]
A.125\[\]
B.625\[\]
C.25\[\]
D. 1025\[\]
Answer
570.9k+ views
Hint: We find the critical points $\theta ={{\theta }_{c}}$by equating the derivative of the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ to zero in the form of $\tan \theta $. We check whether the function is minimum by checking the double derivative at $\theta ={{\theta }_{c}}$ is greater than zero or not. We use Pythagorean trigonometric identity ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta ,\cos e{{c}^{2}}\theta =1+{{\cot }^{2}}\theta $ to get the minimum value. \[\]
Complete step-by-step answer:
We are given a trigonometric function in $\theta $ from the question as
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta .......\left( 1 \right)\]
We are also given that $\theta $ lies in the interval $\left( 0,\dfrac{\pi }{2} \right)$ which means in the first quadrant. Let us differentiate the given function with respect to $\theta $ in order to find the critical points. We have
\[\dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }\left( 64\sec \theta +27\operatorname{cosec}\theta \right)\]
We use rule of sum for differentiation and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }64\sec \theta +\dfrac{d}{d\theta }27\operatorname{cosec}\theta \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\dfrac{d}{d\theta }\sec \theta +27\dfrac{d}{d\theta }\operatorname{cosec}\theta \\
\end{align}\]
We use the standard differentiation formula for $\sec \theta $ and $\operatorname{cosec}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta +27\left( -\operatorname{cosec}\theta \cot \theta \right) \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta ......\left( 2 \right) \\
\end{align}\]
We equate the above differentiate to zero to have;
\[\Rightarrow 64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta =0\]
We convert all the above trigonometric functions into sin and cosine to have;
\[\begin{align}
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }-27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta }=0 \\
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }=27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta } \\
\end{align}\]
We cross multiply to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{27}{64} \\
& \Rightarrow {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}} \\
\end{align}\]
We put back $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ to have;
\[\Rightarrow {{\left( \tan \theta \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
We take cube root both side of the above equation to have;
\[\Rightarrow \tan \theta =\dfrac{3}{4}\]
The values of $\theta $ for which the above equation is satisfied are critical points. We know that $\tan \theta $ is a strictly increasing function with respect to $\theta $. Since for values of critical point ${{\theta }_{c}}$ in the first quadrant $\sec \theta ,\operatorname{cosec}\theta$ are positive then the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ is not going to change sign. So we proceed to find the second derivative at $\tan {{\theta }_{c}}=\dfrac{3}{4}$. We have;
\[\begin{align}
& \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( \sec \theta \cdot {{\sec }^{2}}\theta +\tan \theta \cdot \sec \theta \tan \theta \right) \\
& -27\left( \operatorname{cosec}\theta \cdot \left( -{{\operatorname{cosec}}^{2}}\theta \right)+\operatorname{cosec}\theta \cdot \left( -\operatorname{cosec}\theta \cdot \cot \theta \right) \right) \\
& \Rightarrow \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( {{\sec }^{3}}\theta +\sec \theta {{\tan }^{2}}\theta \right)+27\left( {{\operatorname{cosec}}^{3}}\theta +{{\operatorname{cosec}}^{2}}\theta \cot \theta \right).....\left( 3 \right) \\
\end{align}\]
We need to double derivative value at the critical point $\tan {{\theta }_{c}}=\dfrac{3}{4}$.We use the Pythagorean identity of secant and tangent to have;
\[\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{3}{4} \right)}^{2}}}=\dfrac{5}{4}\]
We use the reciprocal relationship between tangent and cotangent to have;
\[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\]
We use the Pythagorean identity of cosecant and cotangent to have;
\[\operatorname{cosec}\theta =\sqrt{1+{{\cot }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{4}{3} \right)}^{2}}}=\dfrac{5}{3}\]
We put the values $\operatorname{cosec}\theta ,\cot \theta ,\sec \theta ,\tan \theta $ in the double derivative (3) to have;
\[\dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( {{\theta }_{c}} \right)=64\left( {{\left( \dfrac{5}{4} \right)}^{3}}+\dfrac{5}{4}\times {{\left( \dfrac{3}{4} \right)}^{2}} \right)+27\left( {{\left( \dfrac{5}{3} \right)}^{3}}+{{\left( \dfrac{5}{4} \right)}^{2}}\left( \dfrac{4}{3} \right) \right)>0.\]
So there is a minimum at $\tan \theta =\dfrac{3}{4}$ for the function $f\left( \theta \right)$ and the minimum value is;
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta =64\times \dfrac{5}{4}+27\times \dfrac{5}{3}=125\]
So, the correct answer is “Option A”.
Note: We see that since $\tan \theta $ is a strictly increasing function $\theta ={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ will be the only critical point in $\left( 0,\dfrac{\pi }{2} \right)$ and we can find the minimum directly without calculating the double derivative. We note that critical points are also the points where the derivative is not defined for example $\theta =\dfrac{\pi }{2}$ for the function $\tan \theta $.
Complete step-by-step answer:
We are given a trigonometric function in $\theta $ from the question as
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta .......\left( 1 \right)\]
We are also given that $\theta $ lies in the interval $\left( 0,\dfrac{\pi }{2} \right)$ which means in the first quadrant. Let us differentiate the given function with respect to $\theta $ in order to find the critical points. We have
\[\dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }\left( 64\sec \theta +27\operatorname{cosec}\theta \right)\]
We use rule of sum for differentiation and have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=\dfrac{d}{d\theta }64\sec \theta +\dfrac{d}{d\theta }27\operatorname{cosec}\theta \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\dfrac{d}{d\theta }\sec \theta +27\dfrac{d}{d\theta }\operatorname{cosec}\theta \\
\end{align}\]
We use the standard differentiation formula for $\sec \theta $ and $\operatorname{cosec}\theta $ to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta +27\left( -\operatorname{cosec}\theta \cot \theta \right) \\
& \Rightarrow \dfrac{d}{d\theta }f\left( \theta \right)=64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta ......\left( 2 \right) \\
\end{align}\]
We equate the above differentiate to zero to have;
\[\Rightarrow 64\sec \theta \tan \theta -27\operatorname{cosec}\theta \cot \theta =0\]
We convert all the above trigonometric functions into sin and cosine to have;
\[\begin{align}
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }-27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta }=0 \\
& \Rightarrow 64\dfrac{1}{\cos \theta }\dfrac{\sin \theta }{\cos \theta }=27\dfrac{1}{\sin \theta }\dfrac{\cos \theta }{\sin \theta } \\
\end{align}\]
We cross multiply to have;
\[\begin{align}
& \Rightarrow \dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{27}{64} \\
& \Rightarrow {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}} \\
\end{align}\]
We put back $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ to have;
\[\Rightarrow {{\left( \tan \theta \right)}^{3}}={{\left( \dfrac{3}{4} \right)}^{3}}\]
We take cube root both side of the above equation to have;
\[\Rightarrow \tan \theta =\dfrac{3}{4}\]
The values of $\theta $ for which the above equation is satisfied are critical points. We know that $\tan \theta $ is a strictly increasing function with respect to $\theta $. Since for values of critical point ${{\theta }_{c}}$ in the first quadrant $\sec \theta ,\operatorname{cosec}\theta$ are positive then the given function $f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta $ is not going to change sign. So we proceed to find the second derivative at $\tan {{\theta }_{c}}=\dfrac{3}{4}$. We have;
\[\begin{align}
& \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( \sec \theta \cdot {{\sec }^{2}}\theta +\tan \theta \cdot \sec \theta \tan \theta \right) \\
& -27\left( \operatorname{cosec}\theta \cdot \left( -{{\operatorname{cosec}}^{2}}\theta \right)+\operatorname{cosec}\theta \cdot \left( -\operatorname{cosec}\theta \cdot \cot \theta \right) \right) \\
& \Rightarrow \dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( \theta \right)=64\left( {{\sec }^{3}}\theta +\sec \theta {{\tan }^{2}}\theta \right)+27\left( {{\operatorname{cosec}}^{3}}\theta +{{\operatorname{cosec}}^{2}}\theta \cot \theta \right).....\left( 3 \right) \\
\end{align}\]
We need to double derivative value at the critical point $\tan {{\theta }_{c}}=\dfrac{3}{4}$.We use the Pythagorean identity of secant and tangent to have;
\[\sec \theta =\sqrt{1+{{\tan }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{3}{4} \right)}^{2}}}=\dfrac{5}{4}\]
We use the reciprocal relationship between tangent and cotangent to have;
\[\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\]
We use the Pythagorean identity of cosecant and cotangent to have;
\[\operatorname{cosec}\theta =\sqrt{1+{{\cot }^{2}}\theta }=\sqrt{1+{{\left( \dfrac{4}{3} \right)}^{2}}}=\dfrac{5}{3}\]
We put the values $\operatorname{cosec}\theta ,\cot \theta ,\sec \theta ,\tan \theta $ in the double derivative (3) to have;
\[\dfrac{{{d}^{2}}}{d{{\theta }^{2}}}f\left( {{\theta }_{c}} \right)=64\left( {{\left( \dfrac{5}{4} \right)}^{3}}+\dfrac{5}{4}\times {{\left( \dfrac{3}{4} \right)}^{2}} \right)+27\left( {{\left( \dfrac{5}{3} \right)}^{3}}+{{\left( \dfrac{5}{4} \right)}^{2}}\left( \dfrac{4}{3} \right) \right)>0.\]
So there is a minimum at $\tan \theta =\dfrac{3}{4}$ for the function $f\left( \theta \right)$ and the minimum value is;
\[f\left( \theta \right)=64\sec \theta +27\operatorname{cosec}\theta =64\times \dfrac{5}{4}+27\times \dfrac{5}{3}=125\]
So, the correct answer is “Option A”.
Note: We see that since $\tan \theta $ is a strictly increasing function $\theta ={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ will be the only critical point in $\left( 0,\dfrac{\pi }{2} \right)$ and we can find the minimum directly without calculating the double derivative. We note that critical points are also the points where the derivative is not defined for example $\theta =\dfrac{\pi }{2}$ for the function $\tan \theta $.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

