
The minimum radius vector of the curve \[\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=1\] is of length
A. \[a-b\]
B. \[a+b\]
C. \[2a+b\]
D. None of these.
Answer
506.1k+ views
Hint: In this problem, we have to find the length for the given minimum radius vector of the curve. We can first assume the radius vector as r. We can then find the minimum radius vector by differentiating the values of squared r. We can then simplify and solve for x and y and substitute in the suitable formula to get the required length.
Complete step by step solution:
We have to find the length for the given minimum radius vector of the curve \[\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=1\].
We can now assume the radius vector as ‘r’.
We know that \[{{r}^{2}}={{x}^{2}}+{{y}^{2}}\]…….. (1)
We can now write the given equation as,
\[\Rightarrow {{x}^{2}}=\dfrac{{{a}^{2}}{{y}^{2}}}{{{y}^{2}}-{{b}^{2}}}\] …….. (2)
We can now substitute (2) in (1), we get
\[\Rightarrow {{r}^{2}}=\dfrac{{{a}^{2}}{{y}^{2}}}{{{y}^{2}}-{{b}^{2}}}+{{y}^{2}}\] …… (3)
We know that for the minimum value of r we can find the value of \[\dfrac{d\left( {{r}^{2}} \right)}{dy}=0\].
We can now differentiate (3), we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{\left( {{y}^{2}}-{{b}^{2}} \right){{a}^{2}}2y-{{a}^{2}}{{y}^{2}}\left( 2y \right)}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y\]
We can now simplify the above step, we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{{{a}^{2}}2{{y}^{3}}-{{b}^{2}}{{a}^{2}}2y-{{a}^{2}}2{{y}^{3}}}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y\]
We can now cancel the similar terms we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{-{{b}^{2}}{{a}^{2}}2y}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y=0\]
We can now solve the above step, we get
\[\begin{align}
& \Rightarrow \dfrac{-{{b}^{2}}{{a}^{2}}2y}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}=-2y \\
& \Rightarrow -2y{{b}^{2}}{{a}^{2}}=-2y{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}} \\
& \Rightarrow {{b}^{2}}{{a}^{2}}={{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}} \\
\end{align}\]
We can now take square root on both sides, we get
\[\begin{align}
& \Rightarrow ab={{y}^{2}}-{{b}^{2}} \\
& \Rightarrow {{y}^{2}}=b\left( a+b \right)......(4) \\
\end{align}\]
Similarly, if we take y value instead of x in (2), we will get
\[\Rightarrow {{x}^{2}}=a\left( a+b \right)\] …….. (5)
We can now substitute (4) and (5) in (1), we get
\[\begin{align}
& \Rightarrow {{r}^{2}}=a\left( a+b \right)+b\left( a+b \right) \\
& \Rightarrow {{r}^{2}}=\left( a+b \right)\left( a+b \right)={{\left( a+b \right)}^{2}} \\
& \Rightarrow r=a+b \\
\end{align}\]
Therefore, the required length is option B. \[a+b\]
Note: We should always remember that we can differentiate using the formula \[\dfrac{u}{v}=\dfrac{vu'-uv'}{{{v}^{2}}}\]. We should also remember the basic differentiation formulas. We should know that we can cancel a square root and the square term as the radical form represents half in the power.
Complete step by step solution:
We have to find the length for the given minimum radius vector of the curve \[\dfrac{{{a}^{2}}}{{{x}^{2}}}+\dfrac{{{b}^{2}}}{{{y}^{2}}}=1\].
We can now assume the radius vector as ‘r’.
We know that \[{{r}^{2}}={{x}^{2}}+{{y}^{2}}\]…….. (1)
We can now write the given equation as,
\[\Rightarrow {{x}^{2}}=\dfrac{{{a}^{2}}{{y}^{2}}}{{{y}^{2}}-{{b}^{2}}}\] …….. (2)
We can now substitute (2) in (1), we get
\[\Rightarrow {{r}^{2}}=\dfrac{{{a}^{2}}{{y}^{2}}}{{{y}^{2}}-{{b}^{2}}}+{{y}^{2}}\] …… (3)
We know that for the minimum value of r we can find the value of \[\dfrac{d\left( {{r}^{2}} \right)}{dy}=0\].
We can now differentiate (3), we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{\left( {{y}^{2}}-{{b}^{2}} \right){{a}^{2}}2y-{{a}^{2}}{{y}^{2}}\left( 2y \right)}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y\]
We can now simplify the above step, we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{{{a}^{2}}2{{y}^{3}}-{{b}^{2}}{{a}^{2}}2y-{{a}^{2}}2{{y}^{3}}}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y\]
We can now cancel the similar terms we get
\[\Rightarrow \dfrac{d\left( {{r}^{2}} \right)}{dy}=\dfrac{-{{b}^{2}}{{a}^{2}}2y}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}+2y=0\]
We can now solve the above step, we get
\[\begin{align}
& \Rightarrow \dfrac{-{{b}^{2}}{{a}^{2}}2y}{{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}}}=-2y \\
& \Rightarrow -2y{{b}^{2}}{{a}^{2}}=-2y{{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}} \\
& \Rightarrow {{b}^{2}}{{a}^{2}}={{\left( {{y}^{2}}-{{b}^{2}} \right)}^{2}} \\
\end{align}\]
We can now take square root on both sides, we get
\[\begin{align}
& \Rightarrow ab={{y}^{2}}-{{b}^{2}} \\
& \Rightarrow {{y}^{2}}=b\left( a+b \right)......(4) \\
\end{align}\]
Similarly, if we take y value instead of x in (2), we will get
\[\Rightarrow {{x}^{2}}=a\left( a+b \right)\] …….. (5)
We can now substitute (4) and (5) in (1), we get
\[\begin{align}
& \Rightarrow {{r}^{2}}=a\left( a+b \right)+b\left( a+b \right) \\
& \Rightarrow {{r}^{2}}=\left( a+b \right)\left( a+b \right)={{\left( a+b \right)}^{2}} \\
& \Rightarrow r=a+b \\
\end{align}\]
Therefore, the required length is option B. \[a+b\]
Note: We should always remember that we can differentiate using the formula \[\dfrac{u}{v}=\dfrac{vu'-uv'}{{{v}^{2}}}\]. We should also remember the basic differentiation formulas. We should know that we can cancel a square root and the square term as the radical form represents half in the power.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

