
The mean of the values 0, 1, 2,...... n having corresponding weights, \[{}^n{C_0},{}^n{C_1},.......{}^n{C_n}\] respectively is
$\left( a \right)\dfrac{{n + 1}}{2}$
$\left( b \right)\dfrac{{{2^{n - 1}} + 1}}{{n + 1}}$
$\left( c \right)\dfrac{{{2^n}}}{n}$
$\left( d \right)\dfrac{n}{2}$
Answer
595.2k+ views
Hint: In this particular question use the concept that the mean of the values is the ratio of the product of sum of values and their corresponding weights to the sum of all the weights, and use the property of Binomial expansion so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given values
0, 1, 2, ................., n
Corresponding weights \[{}^n{C_0},{}^n{C_1},.......{}^n{C_n}\].
Now we have to find out the mean of the values.
So the mean of the values is the ratio of the product of sum of values and their corresponding weights to the sum of all the weights.
Let the mean of the values be denoted by $\bar x$.
$ \Rightarrow \bar x = \dfrac{{\left( {0.{}^n{C_0}} \right) + \left( {1.{}^n{C_1}} \right) + \left( {2.{}^n{C_2}} \right) + ....... + \left( {n.{}^n{C_n}} \right)}}{{{}^n{C_0} + {}^n{C_1} + ...... + {}^n{C_n}}}$
Now the above equation is also written as,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 0}^n {r.{}^n{C_r}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
Now as we know that $\sum\limits_{r = 0}^n {r.{}^n{C_r}} = \sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} $, $\left[ {\because {}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right]$ so use this property in the above equation we have,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
Now simplify the above equation we have,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 1}^n {n{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
As n is independent of r, so n can be written outside the summation so we have,
$ \Rightarrow \bar x = \dfrac{{n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$......................... (1)
Now as we know that according to the Binomial expansion the expansion of ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ...... + {}^n{C_n}{x^n}$
So in place of x substitute 1 we have,
$ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{C_0} + {}^n{C_1} + {}^n{C_2} + ...... + {}^n{C_n}$
\[ \Rightarrow {\left( 2 \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} \]
Similarly, $\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} = {\left( 2 \right)^{n - 1}}$
So use these values in equation (1) we have,
$ \Rightarrow \bar x = \dfrac{{n{{\left( 2 \right)}^{n - 1}}}}{{{2^n}}}$
$ \Rightarrow \bar x = \dfrac{n}{{{2^{n - n + 1}}}} = \dfrac{n}{2}$
So this is the required mean of the given values.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that, $\sum\limits_{r = 0}^n {r.{}^n{C_r}} = \sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} $, $\left[ {\because {}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right]$ and always recall the binomial expansion which is given as, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ...... + {}^n{C_n}{x^n}$, therefore, ${\left( {1 + 1} \right)^n} = {}^n{C_0} + {}^n{C_1} + {}^n{C_2} + ...... + {}^n{C_n}$.
Complete step-by-step answer:
Given values
0, 1, 2, ................., n
Corresponding weights \[{}^n{C_0},{}^n{C_1},.......{}^n{C_n}\].
Now we have to find out the mean of the values.
So the mean of the values is the ratio of the product of sum of values and their corresponding weights to the sum of all the weights.
Let the mean of the values be denoted by $\bar x$.
$ \Rightarrow \bar x = \dfrac{{\left( {0.{}^n{C_0}} \right) + \left( {1.{}^n{C_1}} \right) + \left( {2.{}^n{C_2}} \right) + ....... + \left( {n.{}^n{C_n}} \right)}}{{{}^n{C_0} + {}^n{C_1} + ...... + {}^n{C_n}}}$
Now the above equation is also written as,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 0}^n {r.{}^n{C_r}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
Now as we know that $\sum\limits_{r = 0}^n {r.{}^n{C_r}} = \sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} $, $\left[ {\because {}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right]$ so use this property in the above equation we have,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
Now simplify the above equation we have,
$ \Rightarrow \bar x = \dfrac{{\sum\limits_{r = 1}^n {n{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$
As n is independent of r, so n can be written outside the summation so we have,
$ \Rightarrow \bar x = \dfrac{{n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} }}{{\sum\limits_{r = 0}^n {{}^n{C_r}} }}$......................... (1)
Now as we know that according to the Binomial expansion the expansion of ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ...... + {}^n{C_n}{x^n}$
So in place of x substitute 1 we have,
$ \Rightarrow {\left( {1 + 1} \right)^n} = {}^n{C_0} + {}^n{C_1} + {}^n{C_2} + ...... + {}^n{C_n}$
\[ \Rightarrow {\left( 2 \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} \]
Similarly, $\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} = {\left( 2 \right)^{n - 1}}$
So use these values in equation (1) we have,
$ \Rightarrow \bar x = \dfrac{{n{{\left( 2 \right)}^{n - 1}}}}{{{2^n}}}$
$ \Rightarrow \bar x = \dfrac{n}{{{2^{n - n + 1}}}} = \dfrac{n}{2}$
So this is the required mean of the given values.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that, $\sum\limits_{r = 0}^n {r.{}^n{C_r}} = \sum\limits_{r = 1}^n {r.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} $, $\left[ {\because {}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right]$ and always recall the binomial expansion which is given as, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ...... + {}^n{C_n}{x^n}$, therefore, ${\left( {1 + 1} \right)^n} = {}^n{C_0} + {}^n{C_1} + {}^n{C_2} + ...... + {}^n{C_n}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

