
The mean of the numbers $1,2,3,4,.........n$ with the respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$ is:
A. $\dfrac{{3n(n + 1)}}{{2(2n + 1)}}$
B. $\dfrac{{n(n + 1)}}{{2(2n - 1)}}$
C. $\dfrac{{3n + 1}}{4}$
D. $\dfrac{{3n + 1}}{3}$
Answer
577.8k+ views
Hint:
Here the weight represents the frequency. Let it represent by $w$
So let ${x_i} = i$ where $i = 1,2,3......n$ and ${w_i} = i + {i^2}$
This satisfies the given equation
So mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Complete step by step solution:
Here in this question we need to find the mean of the given numbers $1,2,3,4,.....n$ with their respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$
This means that here the respective weights represent the frequency of the given numbers. Let us denote it by ${w_i} = i + {i^2}$
So we can draw the table as
So basically here we have ${x_i}$ as the numbers so here ${x_i} = i$
And ${w_i} = i + {i^2}$ here represents the weights of the given numbers.
As we know that mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
$ = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Mean$ = \dfrac{{\sum\limits_{i = 1}^n {{i^3} + \sum\limits_{i = 1}^n {{i^2}} } }}{{\sum\limits_{i = 1}^n {i + \sum\limits_{i = 1}^n {{i^2}} } }}$
As we know that $\sum\limits_{i = 1}^n i $$ = $$1 + 2 + 3 + ....... + n = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{i = 1}^n {{i^2}} = $${1^2} + {2^2} + {3^2} + ........{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = $${1^3} + {2^3} + {3^3} + ........{n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$
So we can write these values in the above equation we will get that
Mean$ = \dfrac{{({1^3} + {2^3} + {3^3} + ........{n^3}) + ({1^2} + {2^2} + {3^2} + ........{n^2})}}{{({1^2} + {2^2} + {3^2} + ........{n^2}) + (1 + 2 + 3 + ....... + n)}}$
$ = \dfrac{{\dfrac{{{n^2}{{(n + 1)}^2}}}{4} + \dfrac{{n(n + 1)(2n + 1)}}{6}}}{{\dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}}}$
$ = \dfrac{{\dfrac{{n(n + 1)}}{2}\left( {\dfrac{{n(n + 1)}}{2} + \dfrac{{2n + 1}}{3}} \right)}}{{\dfrac{{n(n + 1)}}{2}\left( {1 + \dfrac{{2n + 1}}{3}} \right)}}$
So upon calculating we will get that
Mean$ = \dfrac{{3{n^2} + 3n + 4n + 2}}{{4n + 8}}$
$ = \dfrac{{3{n^2} + 7n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3{n^2} + 6n + n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3n(n + 2) + (n + 2)}}{{4(n + 2)}}$
$ = \dfrac{{(n + 2)(3n + 1)}}{{4(n + 2)}} = \dfrac{{3n + 1}}{4}$
Therefore we get that ${\text{mean}} = \dfrac{{3n + 1}}{4}$
Note:
We can use hit and trial method by putting $n = 3$ the we can find the mean of the $1,2,3$ of the respective weights ${1^2} + 1,{2^2} + 2,{3^2} + 3$
So we get that mean$ = \dfrac{{\sum {w.x} }}{{\sum w }} = \dfrac{{1(2) + 2(6) + 3(12)}}{{2 + 6 + 12}} = \dfrac{5}{2}$
Now we can put $n = 3$ in the given options and check that which option has the value $\dfrac{5}{2}$ when we put n as the value three. So that option will be the correct one.
A. $\dfrac{{3(3)(4)}}{{2(7)}} \ne \dfrac{5}{2}$
B. $\dfrac{{3(4)}}{{2(5)}} \ne \dfrac{5}{2}$
C. $\dfrac{{9 + 1}}{4} = \dfrac{5}{2}$
Hence option C is correct.
Here the weight represents the frequency. Let it represent by $w$
So let ${x_i} = i$ where $i = 1,2,3......n$ and ${w_i} = i + {i^2}$
This satisfies the given equation
So mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Complete step by step solution:
Here in this question we need to find the mean of the given numbers $1,2,3,4,.....n$ with their respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$
This means that here the respective weights represent the frequency of the given numbers. Let us denote it by ${w_i} = i + {i^2}$
So we can draw the table as
| Numbers ${x_i}$ | $1$ | $2$ | $3$ | …………… | $n$ |
| Weight ${w_i}$ | ${1^2} + 1$ | ${2^2} + 2$ | ${3^2} + 3$ | $...........$ | ${n^2} + n$ |
So basically here we have ${x_i}$ as the numbers so here ${x_i} = i$
And ${w_i} = i + {i^2}$ here represents the weights of the given numbers.
As we know that mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
$ = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Mean$ = \dfrac{{\sum\limits_{i = 1}^n {{i^3} + \sum\limits_{i = 1}^n {{i^2}} } }}{{\sum\limits_{i = 1}^n {i + \sum\limits_{i = 1}^n {{i^2}} } }}$
As we know that $\sum\limits_{i = 1}^n i $$ = $$1 + 2 + 3 + ....... + n = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{i = 1}^n {{i^2}} = $${1^2} + {2^2} + {3^2} + ........{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = $${1^3} + {2^3} + {3^3} + ........{n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$
So we can write these values in the above equation we will get that
Mean$ = \dfrac{{({1^3} + {2^3} + {3^3} + ........{n^3}) + ({1^2} + {2^2} + {3^2} + ........{n^2})}}{{({1^2} + {2^2} + {3^2} + ........{n^2}) + (1 + 2 + 3 + ....... + n)}}$
$ = \dfrac{{\dfrac{{{n^2}{{(n + 1)}^2}}}{4} + \dfrac{{n(n + 1)(2n + 1)}}{6}}}{{\dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}}}$
$ = \dfrac{{\dfrac{{n(n + 1)}}{2}\left( {\dfrac{{n(n + 1)}}{2} + \dfrac{{2n + 1}}{3}} \right)}}{{\dfrac{{n(n + 1)}}{2}\left( {1 + \dfrac{{2n + 1}}{3}} \right)}}$
So upon calculating we will get that
Mean$ = \dfrac{{3{n^2} + 3n + 4n + 2}}{{4n + 8}}$
$ = \dfrac{{3{n^2} + 7n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3{n^2} + 6n + n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3n(n + 2) + (n + 2)}}{{4(n + 2)}}$
$ = \dfrac{{(n + 2)(3n + 1)}}{{4(n + 2)}} = \dfrac{{3n + 1}}{4}$
Therefore we get that ${\text{mean}} = \dfrac{{3n + 1}}{4}$
Note:
We can use hit and trial method by putting $n = 3$ the we can find the mean of the $1,2,3$ of the respective weights ${1^2} + 1,{2^2} + 2,{3^2} + 3$
So we get that mean$ = \dfrac{{\sum {w.x} }}{{\sum w }} = \dfrac{{1(2) + 2(6) + 3(12)}}{{2 + 6 + 12}} = \dfrac{5}{2}$
Now we can put $n = 3$ in the given options and check that which option has the value $\dfrac{5}{2}$ when we put n as the value three. So that option will be the correct one.
A. $\dfrac{{3(3)(4)}}{{2(7)}} \ne \dfrac{5}{2}$
B. $\dfrac{{3(4)}}{{2(5)}} \ne \dfrac{5}{2}$
C. $\dfrac{{9 + 1}}{4} = \dfrac{5}{2}$
Hence option C is correct.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

