
The mean of the numbers $1,2,3,4,.........n$ with the respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$ is:
A. $\dfrac{{3n(n + 1)}}{{2(2n + 1)}}$
B. $\dfrac{{n(n + 1)}}{{2(2n - 1)}}$
C. $\dfrac{{3n + 1}}{4}$
D. $\dfrac{{3n + 1}}{3}$
Answer
564k+ views
Hint:
Here the weight represents the frequency. Let it represent by $w$
So let ${x_i} = i$ where $i = 1,2,3......n$ and ${w_i} = i + {i^2}$
This satisfies the given equation
So mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Complete step by step solution:
Here in this question we need to find the mean of the given numbers $1,2,3,4,.....n$ with their respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$
This means that here the respective weights represent the frequency of the given numbers. Let us denote it by ${w_i} = i + {i^2}$
So we can draw the table as
So basically here we have ${x_i}$ as the numbers so here ${x_i} = i$
And ${w_i} = i + {i^2}$ here represents the weights of the given numbers.
As we know that mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
$ = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Mean$ = \dfrac{{\sum\limits_{i = 1}^n {{i^3} + \sum\limits_{i = 1}^n {{i^2}} } }}{{\sum\limits_{i = 1}^n {i + \sum\limits_{i = 1}^n {{i^2}} } }}$
As we know that $\sum\limits_{i = 1}^n i $$ = $$1 + 2 + 3 + ....... + n = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{i = 1}^n {{i^2}} = $${1^2} + {2^2} + {3^2} + ........{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = $${1^3} + {2^3} + {3^3} + ........{n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$
So we can write these values in the above equation we will get that
Mean$ = \dfrac{{({1^3} + {2^3} + {3^3} + ........{n^3}) + ({1^2} + {2^2} + {3^2} + ........{n^2})}}{{({1^2} + {2^2} + {3^2} + ........{n^2}) + (1 + 2 + 3 + ....... + n)}}$
$ = \dfrac{{\dfrac{{{n^2}{{(n + 1)}^2}}}{4} + \dfrac{{n(n + 1)(2n + 1)}}{6}}}{{\dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}}}$
$ = \dfrac{{\dfrac{{n(n + 1)}}{2}\left( {\dfrac{{n(n + 1)}}{2} + \dfrac{{2n + 1}}{3}} \right)}}{{\dfrac{{n(n + 1)}}{2}\left( {1 + \dfrac{{2n + 1}}{3}} \right)}}$
So upon calculating we will get that
Mean$ = \dfrac{{3{n^2} + 3n + 4n + 2}}{{4n + 8}}$
$ = \dfrac{{3{n^2} + 7n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3{n^2} + 6n + n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3n(n + 2) + (n + 2)}}{{4(n + 2)}}$
$ = \dfrac{{(n + 2)(3n + 1)}}{{4(n + 2)}} = \dfrac{{3n + 1}}{4}$
Therefore we get that ${\text{mean}} = \dfrac{{3n + 1}}{4}$
Note:
We can use hit and trial method by putting $n = 3$ the we can find the mean of the $1,2,3$ of the respective weights ${1^2} + 1,{2^2} + 2,{3^2} + 3$
So we get that mean$ = \dfrac{{\sum {w.x} }}{{\sum w }} = \dfrac{{1(2) + 2(6) + 3(12)}}{{2 + 6 + 12}} = \dfrac{5}{2}$
Now we can put $n = 3$ in the given options and check that which option has the value $\dfrac{5}{2}$ when we put n as the value three. So that option will be the correct one.
A. $\dfrac{{3(3)(4)}}{{2(7)}} \ne \dfrac{5}{2}$
B. $\dfrac{{3(4)}}{{2(5)}} \ne \dfrac{5}{2}$
C. $\dfrac{{9 + 1}}{4} = \dfrac{5}{2}$
Hence option C is correct.
Here the weight represents the frequency. Let it represent by $w$
So let ${x_i} = i$ where $i = 1,2,3......n$ and ${w_i} = i + {i^2}$
This satisfies the given equation
So mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Complete step by step solution:
Here in this question we need to find the mean of the given numbers $1,2,3,4,.....n$ with their respective weights ${1^2} + 1,{2^2} + 2,........{n^2} + n$
This means that here the respective weights represent the frequency of the given numbers. Let us denote it by ${w_i} = i + {i^2}$
So we can draw the table as
| Numbers ${x_i}$ | $1$ | $2$ | $3$ | …………… | $n$ |
| Weight ${w_i}$ | ${1^2} + 1$ | ${2^2} + 2$ | ${3^2} + 3$ | $...........$ | ${n^2} + n$ |
So basically here we have ${x_i}$ as the numbers so here ${x_i} = i$
And ${w_i} = i + {i^2}$ here represents the weights of the given numbers.
As we know that mean$ = \dfrac{{\sum {{w_i}{x_i}} }}{{\sum {{w_i}} }} = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
$ = \dfrac{{\sum\limits_{i = 1}^n {(i + {i^2})i} }}{{\sum\limits_{i = 1}^n {(i + {i^2})} }}$
Mean$ = \dfrac{{\sum\limits_{i = 1}^n {{i^3} + \sum\limits_{i = 1}^n {{i^2}} } }}{{\sum\limits_{i = 1}^n {i + \sum\limits_{i = 1}^n {{i^2}} } }}$
As we know that $\sum\limits_{i = 1}^n i $$ = $$1 + 2 + 3 + ....... + n = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{i = 1}^n {{i^2}} = $${1^2} + {2^2} + {3^2} + ........{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{i = 1}^n {{i^3}} = $${1^3} + {2^3} + {3^3} + ........{n^3} = \dfrac{{{n^2}{{(n + 1)}^2}}}{4}$
So we can write these values in the above equation we will get that
Mean$ = \dfrac{{({1^3} + {2^3} + {3^3} + ........{n^3}) + ({1^2} + {2^2} + {3^2} + ........{n^2})}}{{({1^2} + {2^2} + {3^2} + ........{n^2}) + (1 + 2 + 3 + ....... + n)}}$
$ = \dfrac{{\dfrac{{{n^2}{{(n + 1)}^2}}}{4} + \dfrac{{n(n + 1)(2n + 1)}}{6}}}{{\dfrac{{n(n + 1)(2n + 1)}}{6} + \dfrac{{n(n + 1)}}{2}}}$
$ = \dfrac{{\dfrac{{n(n + 1)}}{2}\left( {\dfrac{{n(n + 1)}}{2} + \dfrac{{2n + 1}}{3}} \right)}}{{\dfrac{{n(n + 1)}}{2}\left( {1 + \dfrac{{2n + 1}}{3}} \right)}}$
So upon calculating we will get that
Mean$ = \dfrac{{3{n^2} + 3n + 4n + 2}}{{4n + 8}}$
$ = \dfrac{{3{n^2} + 7n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3{n^2} + 6n + n + 2}}{{4(n + 2)}}$
$ = \dfrac{{3n(n + 2) + (n + 2)}}{{4(n + 2)}}$
$ = \dfrac{{(n + 2)(3n + 1)}}{{4(n + 2)}} = \dfrac{{3n + 1}}{4}$
Therefore we get that ${\text{mean}} = \dfrac{{3n + 1}}{4}$
Note:
We can use hit and trial method by putting $n = 3$ the we can find the mean of the $1,2,3$ of the respective weights ${1^2} + 1,{2^2} + 2,{3^2} + 3$
So we get that mean$ = \dfrac{{\sum {w.x} }}{{\sum w }} = \dfrac{{1(2) + 2(6) + 3(12)}}{{2 + 6 + 12}} = \dfrac{5}{2}$
Now we can put $n = 3$ in the given options and check that which option has the value $\dfrac{5}{2}$ when we put n as the value three. So that option will be the correct one.
A. $\dfrac{{3(3)(4)}}{{2(7)}} \ne \dfrac{5}{2}$
B. $\dfrac{{3(4)}}{{2(5)}} \ne \dfrac{5}{2}$
C. $\dfrac{{9 + 1}}{4} = \dfrac{5}{2}$
Hence option C is correct.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

