
The mean free path of the molecule of a certain gas at 300 K is $2.6\times {{10}^{-5}}m$ . The collision diameter of the molecule is 0.26 nm. Calculate
(a) Pressure of the gas, and
(b) Number of molecules per unit volume of the gas.
A. (a) $1.281\times {{10}^{23}}{{m}^{-3}}$ (b) $5.306\times {{10}^{2}}Pa$
B. (a) $1.281\times {{10}^{22}}{{m}^{-3}}$ (b) $5.306\times {{10}^{3}}Pa$
C. (a) $12.81\times {{10}^{23}}{{m}^{-3}}$ (b) $53.06\times {{10}^{2}}Pa$
D. (a) $2.56\times {{10}^{23}}{{m}^{-3}}$ (b) $10.612\times {{10}^{2}}Pa$
Answer
529.5k+ views
Hint: The formula used to calculate the pressure of the gas is as follows.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant, ${{N}_{A}}$ = Avogadro number
T = Temperature of the gas
$\sigma $ = Diameter of the gas molecule
$\lambda $ = Mean free path
Complete step-by-step answer: - In the question it is asked to calculate the pressure of the gas and number of molecules per unit volume of the gas by using the data given in the question.
a) Initially we have to calculate the pressure of the gas by using the below formula.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant = 8.314 , ${{N}_{A}}$ = Avogadro number = $6.023\times {{10}^{23}}$
T = Temperature of the gas = 300 K
$\sigma $ = Diameter of the gas molecule = 0.26 nm = 0.26 $\times {{10}^{-10}}m$
$\lambda $ = Mean free path = $2.6\times {{10}^{-5}}m$
- Substitute the above values in the above formula to get the pressure of the gas.
\[ P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda } \\
=\dfrac{8.314\times 300}{\sqrt{2}\times 3.14\times 0.2\times {{10}^{-10}}\times 2.6\times {{10}^{-5}}} \\
=\dfrac{2494.5}{4700.86} \\
P=5.30\times {{10}^{2}} \\
\]
- The pressure of the gas at 300 K is $P=5.30\times {{10}^{2}}$.
b) Now we have to calculate the Number of molecules per unit volume of the gas by using the formula below.
P = cRT
P = Pressure of the gas = $5.30\times {{10}^{2}}$
c = Concentration of the gas
R = Gas constant = 8.314
T = Temperature of the gas = 300 K
- Substitute all the known values in the above formula to calculate the concentration of the gas.
P = cRT
\[\Rightarrow c=\dfrac{5.30\times {{10}^{2}}}{8.314\times 300} \\
\therefore c=2.12\times {{10}^{-3}} \\
\]
- From concentration we can calculate the number of molecules by using the below formula.
Number of molecules = (Concentration of the gas) (Avogadro Number)
Number of molecules of the gas = $2.12\times {{10}^{-2}}\times 6.023\times {{10}^{23}}=1.28\times {{10}^{21}}molecules/volume$
Note: To calculate the number of molecules of the gas first we have to find the pressure of the gas. By using pressure we have to calculate the concentration of the gas later using concentration of the gas we can calculate the number of molecules of the gas.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant, ${{N}_{A}}$ = Avogadro number
T = Temperature of the gas
$\sigma $ = Diameter of the gas molecule
$\lambda $ = Mean free path
Complete step-by-step answer: - In the question it is asked to calculate the pressure of the gas and number of molecules per unit volume of the gas by using the data given in the question.
a) Initially we have to calculate the pressure of the gas by using the below formula.
\[P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda }\]
Where P = Pressure of the gas
K = $\dfrac{R}{{{N}_{A}}}$ , R= Gas constant = 8.314 , ${{N}_{A}}$ = Avogadro number = $6.023\times {{10}^{23}}$
T = Temperature of the gas = 300 K
$\sigma $ = Diameter of the gas molecule = 0.26 nm = 0.26 $\times {{10}^{-10}}m$
$\lambda $ = Mean free path = $2.6\times {{10}^{-5}}m$
- Substitute the above values in the above formula to get the pressure of the gas.
\[ P=\dfrac{KT}{\sqrt{2}\pi {{\sigma }^{2}}\lambda } \\
=\dfrac{8.314\times 300}{\sqrt{2}\times 3.14\times 0.2\times {{10}^{-10}}\times 2.6\times {{10}^{-5}}} \\
=\dfrac{2494.5}{4700.86} \\
P=5.30\times {{10}^{2}} \\
\]
- The pressure of the gas at 300 K is $P=5.30\times {{10}^{2}}$.
b) Now we have to calculate the Number of molecules per unit volume of the gas by using the formula below.
P = cRT
P = Pressure of the gas = $5.30\times {{10}^{2}}$
c = Concentration of the gas
R = Gas constant = 8.314
T = Temperature of the gas = 300 K
- Substitute all the known values in the above formula to calculate the concentration of the gas.
P = cRT
\[\Rightarrow c=\dfrac{5.30\times {{10}^{2}}}{8.314\times 300} \\
\therefore c=2.12\times {{10}^{-3}} \\
\]
- From concentration we can calculate the number of molecules by using the below formula.
Number of molecules = (Concentration of the gas) (Avogadro Number)
Number of molecules of the gas = $2.12\times {{10}^{-2}}\times 6.023\times {{10}^{23}}=1.28\times {{10}^{21}}molecules/volume$
Note: To calculate the number of molecules of the gas first we have to find the pressure of the gas. By using pressure we have to calculate the concentration of the gas later using concentration of the gas we can calculate the number of molecules of the gas.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

