
The maximum value of $\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ is attained at
(a) $\dfrac{\pi }{12}$
(b) $\dfrac{\pi }{6}$
(c) $\dfrac{\pi }{3}$
(d) $\dfrac{\pi }{2}$
Answer
556.5k+ views
Hint: We start solving the problem by assuming $f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$. We then make use of the property $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$ for the cosine function present in the problem. We then make use of sum to product formula $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ to proceed through the problem. We then make the necessary calculations to simplify the function. We then make use of the property that the function $\cos \theta $ is maximum if the value of $\theta $ is 0 to get the required value of ‘x’.
Complete step by step answer:
According to the problem, we are asked to find the value of ‘x’ at which the maximum value of the function $\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$ is attained in the interval $\left( 0,\dfrac{\pi }{2} \right)$.
Let us assume $f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$.
We know that $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$.
$\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{2}-\left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{3}-x \right)$.
We know that $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{x+\dfrac{\pi }{6}+\dfrac{\pi }{3}-x}{2} \right)\cos \left( \dfrac{x+\dfrac{\pi }{6}-\dfrac{\pi }{3}+x}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{2\pi +\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\dfrac{\pi -2\pi }{6}}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{3\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\left( \dfrac{-\pi }{6} \right)}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\pi }{4} \right)\cos \left( x-\dfrac{\pi }{12} \right)$.
$\Rightarrow f\left( x \right)=2\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( x-\dfrac{\pi }{12} \right)$.
\[\Rightarrow f\left( x \right)=\sqrt{2}\cos \left( x-\dfrac{\pi }{12} \right)\] ---(1).
From equation (1), we can see that the function $f\left( x \right)$ will be maximum if the function $\cos \left( x+\dfrac{-\pi }{12} \right)$ is maximum.
We know that the function $\cos \theta $ is maximum if the value of $\theta $ is 0.
So, the function $f\left( x \right)$ is maximum if $x-\dfrac{\pi }{12}=0$.
$\Rightarrow x=\dfrac{\pi }{12}$.
So, we have found that the function $\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$ will attain maximum at $x=\dfrac{\pi }{12}$.
So, the correct answer is “Option a”.
Note: We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully. We can also solve this problem as shown below:
We have $f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$.
Let us differentiate w.r.t x on both sides.
So, we get ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right)+\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{'}}\left( x \right)=\cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right)$ ---(1).
Now, let us find the value of x in the interval $\left( 0,\dfrac{\pi }{2} \right)$ for which we get ${{f}^{'}}\left( x \right)=0$.
$\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right)=0$.
$\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)=\sin \left( x+\dfrac{\pi }{6} \right)$. We know that this will be possible if $x+\dfrac{\pi }{6}=\dfrac{\pi }{4}$.
$\Rightarrow x=\dfrac{\pi }{4}-\dfrac{\pi }{6}$.
$\Rightarrow x=\dfrac{3\pi -2\pi }{12}=\dfrac{\pi }{12}$ ---(2).
Now, let us differentiate equation (1) again.
So, we get ${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right)-\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=-\sin \left( x+\dfrac{\pi }{6} \right)-\cos \left( x+\dfrac{\pi }{6} \right)$ ---(3).
Let us substitute the value of ‘x’ obtained from equation (2) in equation (3).
So, we get ${{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right)$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{4} \right)-\cos \left( \dfrac{\pi }{4} \right)$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sqrt{2}<0$. Which suggests there is a maximum at $x=\dfrac{\pi }{12}$.
Complete step by step answer:
According to the problem, we are asked to find the value of ‘x’ at which the maximum value of the function $\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$ is attained in the interval $\left( 0,\dfrac{\pi }{2} \right)$.
Let us assume $f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$.
We know that $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$.
$\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{2}-\left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{3}-x \right)$.
We know that $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{x+\dfrac{\pi }{6}+\dfrac{\pi }{3}-x}{2} \right)\cos \left( \dfrac{x+\dfrac{\pi }{6}-\dfrac{\pi }{3}+x}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{2\pi +\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\dfrac{\pi -2\pi }{6}}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\dfrac{3\pi }{6}}{2} \right)\cos \left( \dfrac{2x+\left( \dfrac{-\pi }{6} \right)}{2} \right)$.
$\Rightarrow f\left( x \right)=2\sin \left( \dfrac{\pi }{4} \right)\cos \left( x-\dfrac{\pi }{12} \right)$.
$\Rightarrow f\left( x \right)=2\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( x-\dfrac{\pi }{12} \right)$.
\[\Rightarrow f\left( x \right)=\sqrt{2}\cos \left( x-\dfrac{\pi }{12} \right)\] ---(1).
From equation (1), we can see that the function $f\left( x \right)$ will be maximum if the function $\cos \left( x+\dfrac{-\pi }{12} \right)$ is maximum.
We know that the function $\cos \theta $ is maximum if the value of $\theta $ is 0.
So, the function $f\left( x \right)$ is maximum if $x-\dfrac{\pi }{12}=0$.
$\Rightarrow x=\dfrac{\pi }{12}$.
So, we have found that the function $\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$ will attain maximum at $x=\dfrac{\pi }{12}$.
So, the correct answer is “Option a”.
Note: We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully. We can also solve this problem as shown below:
We have $f\left( x \right)=\sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right)$.
Let us differentiate w.r.t x on both sides.
So, we get ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right)+\cos \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right)+\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{'}}\left( x \right)=\cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right)$ ---(1).
Now, let us find the value of x in the interval $\left( 0,\dfrac{\pi }{2} \right)$ for which we get ${{f}^{'}}\left( x \right)=0$.
$\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right)=0$.
$\Rightarrow \cos \left( x+\dfrac{\pi }{6} \right)=\sin \left( x+\dfrac{\pi }{6} \right)$. We know that this will be possible if $x+\dfrac{\pi }{6}=\dfrac{\pi }{4}$.
$\Rightarrow x=\dfrac{\pi }{4}-\dfrac{\pi }{6}$.
$\Rightarrow x=\dfrac{3\pi -2\pi }{12}=\dfrac{\pi }{12}$ ---(2).
Now, let us differentiate equation (1) again.
So, we get ${{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right)-\sin \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{d}{dx}\left( \cos \left( x+\dfrac{\pi }{6} \right) \right)-\dfrac{d}{dx}\left( \sin \left( x+\dfrac{\pi }{6} \right) \right)$.
$\Rightarrow {{f}^{''}}\left( x \right)=-\sin \left( x+\dfrac{\pi }{6} \right)-\cos \left( x+\dfrac{\pi }{6} \right)$ ---(3).
Let us substitute the value of ‘x’ obtained from equation (2) in equation (3).
So, we get ${{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{12}+\dfrac{\pi }{6} \right)$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sin \left( \dfrac{\pi }{4} \right)-\cos \left( \dfrac{\pi }{4} \right)$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}$.
$\Rightarrow {{f}^{''}}\left( \dfrac{\pi }{12} \right)=-\sqrt{2}<0$. Which suggests there is a maximum at $x=\dfrac{\pi }{12}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

