
The Maximum value of $4{\sin ^2}x - 12\sin x + 7$ is
(A) 25
(B) 4
(C) Does not exist
(D) None of the above
Answer
576.9k+ views
Hint: First we have to change the equation in ${(a + b)^2}$ and we know that the value of $\sin x$ is varies from $ - 1$ to $1$ by using this concept we can solve this question.
Complete step-by-step answer:
It is given that we have to find the maximum value of $4{\sin ^2}x - 12\sin x + 7$
Now we take common $4$ from $4{\sin ^2}x + 12\sin x$
we get : \[4({\sin ^2}x - 3\sin x) + 7\]
Now we have to make this equation in ${(a - b)^2}$ form
So we have multiple and divide $2$ in the term $3\sin x$ and
Add and subtract ${\left( {\dfrac{3}{2}} \right)^2}$ in the equation as :
$4\left( {{{\sin }^2}x - 2 \times \dfrac{3}{2} \times \sin x + {{\left( {\dfrac{3}{2}} \right)}^2} - \left( {\dfrac{3}{2}} \right)}^2 \right) + 7$
We know that ${(a - b)^2}$ $ = {a^2} - 2ab + {b^2}$
So it is changes as $\left[ {4\left( {{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - \dfrac{9}{4}} \right) + 7} \right]$
Now solving further we get \[\left[ {\left( {4{{\left( {\sin x + \dfrac{3}{2}} \right)}^2} - 9} \right) + 7} \right]\]
And finally we get
$\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right]$
Now we have to find out the maximum value of this
We know that
$ - 1 \leqslant \sin x \leqslant 1$ for any value of $x$
Subtract $\dfrac{3}{2}$ in it
$ - 1 - \dfrac{3}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant 1 - \dfrac{3}{2}$
or
$ - \dfrac{5}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant - \dfrac{1}{2}$
On squaring all the terms the sign of fraction will change ;
$\dfrac{1}{4} \leqslant {\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant \dfrac{{25}}{4}$
On multiplying by $4$ we get
$1 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant 25$
Now subtract $2$ from all sides
$ - 1 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} - 2 \leqslant 23$
Hence the maximum value of $\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right]$ is $23$
or maximum value of $4{\sin ^2}x - 12\sin x + 7$ is $23$
So, the correct answer is “Option D”.
Note:Always be careful when you multiply negative sign in inequality the sign of equation is changed .Same method will be used if we replace the $\sin x$ to $\cos x$ or If question is given in any other form like $\tan x,\cot x,\cos ecx,$ try to convert it into in $\sin x$ and $\cos x$ form .
Complete step-by-step answer:
It is given that we have to find the maximum value of $4{\sin ^2}x - 12\sin x + 7$
Now we take common $4$ from $4{\sin ^2}x + 12\sin x$
we get : \[4({\sin ^2}x - 3\sin x) + 7\]
Now we have to make this equation in ${(a - b)^2}$ form
So we have multiple and divide $2$ in the term $3\sin x$ and
Add and subtract ${\left( {\dfrac{3}{2}} \right)^2}$ in the equation as :
$4\left( {{{\sin }^2}x - 2 \times \dfrac{3}{2} \times \sin x + {{\left( {\dfrac{3}{2}} \right)}^2} - \left( {\dfrac{3}{2}} \right)}^2 \right) + 7$
We know that ${(a - b)^2}$ $ = {a^2} - 2ab + {b^2}$
So it is changes as $\left[ {4\left( {{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - \dfrac{9}{4}} \right) + 7} \right]$
Now solving further we get \[\left[ {\left( {4{{\left( {\sin x + \dfrac{3}{2}} \right)}^2} - 9} \right) + 7} \right]\]
And finally we get
$\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right]$
Now we have to find out the maximum value of this
We know that
$ - 1 \leqslant \sin x \leqslant 1$ for any value of $x$
Subtract $\dfrac{3}{2}$ in it
$ - 1 - \dfrac{3}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant 1 - \dfrac{3}{2}$
or
$ - \dfrac{5}{2} \leqslant \sin x - \dfrac{3}{2} \leqslant - \dfrac{1}{2}$
On squaring all the terms the sign of fraction will change ;
$\dfrac{1}{4} \leqslant {\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant \dfrac{{25}}{4}$
On multiplying by $4$ we get
$1 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} \leqslant 25$
Now subtract $2$ from all sides
$ - 1 \leqslant 4{\left( {\sin x - \dfrac{3}{2}} \right)^2} - 2 \leqslant 23$
Hence the maximum value of $\left[ {4{{\left( {\sin x - \dfrac{3}{2}} \right)}^2} - 2} \right]$ is $23$
or maximum value of $4{\sin ^2}x - 12\sin x + 7$ is $23$
So, the correct answer is “Option D”.
Note:Always be careful when you multiply negative sign in inequality the sign of equation is changed .Same method will be used if we replace the $\sin x$ to $\cos x$ or If question is given in any other form like $\tan x,\cot x,\cos ecx,$ try to convert it into in $\sin x$ and $\cos x$ form .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

